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ABSTRACT

We propose a method to reproduce 3D auditory scenes captured

by spherical microphone arrays over headphones. This algorithm

employs expansions of the captured sound and the head related

transfer function over the sphere and uses the orthonormality of

the spherical harmonics. Using a spherical microphone array, we

first record the 3D auditory scene, then the recordings are spa-

tially filtered and reproduced through headphones in the orthog-

onal beam-space of the head related transfer functions (HRTFs).

We use the KEMAR HRTF measurements to verify our algorithm.

In experiments, we use a hemispherical array for recording. The

reproduction results are posted online.

1. INTRODUCTION

Currently available headphone-based personal audio systems can

only recreate a limited 3D auditory scene because when the user

rotates his head, the auditory scene moves also. In another words,

the auditory scene is fixed to his head by the headphones. That is

different from the real-world experience where the auditory scene

is independent on the head rotation. Some HRTF-based technolo-

gies mainly aim to use headphone to create virtual sound sources

at user specified spatial positions, but are unable to recreate scenes

from real-world 3D recordings [1][4].

To reproduce real-world 3D auditory scenes through head-

phones from 3D recordings, a straightforward method is to lo-

calize, track and beamform the sound sources and then use the

corresponding HRTF measurements to filter the beamformed sig-

nals before playback over headphones. This is reasonable for a

few sound sources in simple scenes. However, for complex scenes

with many sources and much reverberation (and thus thousands of

virtual sources), this method will fail. Even worse, in complex

scenes with more sound sources, the localization and near real-

time tracking become very difficult. Recently an alternate, heuris-

tically based approach for which some convincing demonstrations

have been produced, has been proposed [3]. It has been used to

produce quite convincing reproductions. In it one simply chooses

two microphones at locations approximately corresponding to the

ear positions of a listener from a set of microphones on a spherical

array, and then just play back the recordings through headphones.

Here, we seek to extend this idea rigorously and incorporate HRTF

cues in the playback.

In this paper, we will develop a coupled theory based on the

orthonormality of the spherical harmonics1. By using a spherical

This work was partially supported by NSF Award 0205271.
1An equivalent but theoretically stricter approach based on band-

limited Herglotz wave function was introduced in [6].

microphone array, we first decompose the recorded 3D soundfield

in orthogonal beam-space, then we use the resulting beampattern

to approximate the HRTFs for all 3D directions. Our method is in-

dependent of the locations of the sound sources and the surround-

ing environment, except that it is assumed that the microphone

array does not disrupt the acoustics in the recording room. In our

experiments, we first use KEMAR HRTF measurements to verify

our algorithm, which is then applied to the real-world 3D audi-

tory scenes recorded by our hemispherical microphone array as

described in [9].

2. PRINCIPLE OF SPHERICAL BEAMFORMING

The basic principle of a spherical beamformer is to make use of the

orthonormality of spherical harmonics to decompose the sound-

field arriving at a spherical array. Then the orthogonal components

of the soundfield are linearly combined to approximate a desired

beampattern [11].

For a unit magnitude plane wave k, incident from direction

( k, k), the complex pressure field on the surface ( s, s, rs =
a) of the rigid sphere is [12]:
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where jn is the spherical Bessel function of order n, Y m
n is the

spherical harmonics of order n and degree m. * denotes the com-

plex conjugation. hn is the spherical Hankel function of the first

kind.

If we assume that the pressure recorded at each point ( s, s)
on the surface of the sphere s, is weighted by

W
m0
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0
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Then making use of orthonormality of spherical harmonics:Z
s

Y
m
n ( s, s)Y

m0

n0 ( s, s)d s = nn0 mm0 (4)

the total output from a pressure-sensitive spherical surface is:

P =

Z
s

ptW
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n0 ( s, s, ka)d s = Y
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n0 ( k, k) (5)
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This shows the gain of the plane wave coming from ( k, k), for a

continuous pressure-sensitive spherical microphone, isY m0

n0 ( k, k).
Since an arbitrary real function F ( , ) can be expanded in terms

of complex spherical harmonics, we can implement arbitrary beam-

patterns. For example, an ideal beampattern looking at the direc-

tion ( 0, 0) can be modeled as a delta function:

F ( , ) = ( 0, 0), (6)

which can be expanded into an infinite series of spherical harmon-

ics [2]:

F ( , ) = 2
X
n=0

nX
m= n

Y
m
n ( 0, 0)Y

m
n ( , ). (7)

So the weight at each point ( s, s) to achieve this beampattern

is:

w =
P
n=0

1

2inbn(ka)

nP
m= n

Y
m
n ( 0, 0)Y

m
n ( s, s). (8)

The advantage of this system is that it can be steered into any 3D

directions digitally with the same beampattern. This is for an ideal

continuous microphone array on spherical surface.

For discrete arrays with finite number of microphones, the

practical beampattern is a truncated version of (7) to some limited

orderN :

FN ( , ) = 2
NX
n=0

nX
m= n

Y
m
n ( 0, 0)Y

m
n ( , ). (9)

3. IDEAL HRTF SELECTION

In an ideal case, we assume the HRTF is already measured contin-

uously on the spherical surface of radius r. Our goal is to select the

correct HRTF for a specified direction. Although it seems trivial

for an ideal case, we will use this as a starting point and extend it

to more practical cases in the following sections.

We drop the arguments k and r for simplicity, the HRTF for

the sound of wave number k from the point (r, , ) is [5]:

( , ) =
X
n=0

nX
m= n

nmhn(kr)Y
m
n ( , ), (10)

where hn and Y m
n have the same definitions as in the last section,

and nm are the fitting coefficients which can be determined using

real-world discrete HRTF measurements [5].

Suppose we want to select the HRTF for the direction ( k, k),
we apply the following delta function (ideal beampattern) to each

measured HRTF:

F ( , ) = ( k, k), (11)

we have:Z
s

( , )F ( , )d s = ( k, k), (12)

where s is the spherical surface. Obviously, the delta function

simply selects the value we need and discards everything else.

To present another viewpoint of the HRTF selection, we rewrite

(12) into a more “complicated” form by using (7):

Z
s

"X
n=0

nX
m= n

nmhn(kr)Y
m
n ( , )

#

×

"
2
X
n=0

nX
m= n

Y
m
n ( , )Y m

n ( k, k)

#
d s

=
X
n=0

nX
m= n

nmhn(kr)Y
m
n ( k, k). (13)

Alternatively, this can be easily proven by using the orthonormality

of spherical harmonics (4).

4. HRTF APPROXIMATION IN ORTHOGONAL

BEAM-SPACE

In practice, however, HRTFs are measured on discrete points. In

this case, (13) and (4) can only hold approximately and to finite or-

der. In addition, using a practical spherical array with finite num-

ber of microphones, the beampattern is (9).

The HRTF for the sound of wave number k from the measure-

ment point (r, l, l) is:

( l, l) =
X
n=0

nX
m= n

nmhn(kr)Y
m
n ( l, l), (14)

( l = 1, ..., B )

where B is the number of HRTF measurements.

The weighted combination of HRTFs then becomes:

BX
l=1

( l, l)FN ( k, k, l, l). (15)

If the HRTF measurement points ( l, l), l = 1, ...B, are ap-

proximately uniformly distributed on a spherical surface so that

the orthonormality of spherical harmonics holds up to order N 0,

then the HRTF can be expanded into two groups:

( l, l) =
N0

0 ( l, l) + N0+1( l, l), (16)

where

N0

0 ( l, l) =
N0X
n=0

nX
m= n

nmhn(kr)Y
m
n ( l, l),

(17)

N0+1( l, l) =
X

n=N0+1

nX
m= n

nmhn(kr)Y
m
n ( l, l).

(18)

So (15) can be rewritten as:
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Fig. 1. HRTF approximations to orders 5 and 10. Plot shows the

magnitude in dB scale.

BX
l=1

h
N0

0 ( l, l) + N0+1( l, l)
i
FN ( k, k, l, l)

=
BX
l=1

N 0

0 ( l, l)FN ( k, k, l, l) (19)

+
BX
l=1

N0+1( l, l)FN ( k, k, l, l) (20)

=
min(N0,N)
0 ( k, k) + ² (21)

which is the approximation of HRTF up to the ordermin(N 0,N).
Here the error ² consists of two parts: one is the orthonormality

error from (19) which is supposed to be small according to the dis-

crete orthonormalities; the other is from (20) which is also small

with well-chosen N 0 because of the convergence of the series ex-

pansion in (14). In general, this is a quadrature problem over the

spherical surface for spherical harmonics. More details can be

found in [7][8][10][6].

If HRTFs are not measured on uniformly distributed angular

points, which is the case for all currently available measurements,

we can first obtain a uniform version via interpolation [5]. In prac-

tice the HRTF measurement points are significantly more than mi-

crophones on a spherical array. In this case, the HRTF approxi-

mation at ( k, k) depends only on the order of beampattern N ,

which is:

BX
l=1

( l, l)FN ( k, k, l, l) =
N
0 ( k, k) + ². (22)

Therefore, if there is a plane wave incident from ( k, k) in

the original auditory scene, it will be automatically filtered with

the corresponding HRTF, in the approximation of orderN.

5. REPRODUCTION ALGORITHM

Suppose we have built a spherical microphone array to record a

3D auditory scene. The spherical beamformer for this array has
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Fig. 2. Phases of the approximations to orders 5 and 10.

the beampattern as in (9). To reproduce the 3D auditory scene

from the recordings, there are three steps:

1. beamform the recordings to ( l, l) for l = 1, ..., B (the

“uniformly” interpolated point);

2. filter the beamformed signal at ( l, l) with the measured

HRTF ( l, l) for l = 1, ..., B;

3. superimpose the resulted signals for l = 1, ..., B.

Suppose we have sufficient HRTF measurements, the only fac-

tor that determines reproduction quality is the beampattern order

N of the spherical microphone array.

6. VERIFICATION AND EXPERIMENTS

We use the KEMAR HRTF measurements [1] to demonstrate our

algorithm. In Fig. 1, the red (solid) line shows the HRTF measure-

ment at the position just in front of the manikin. The green (dot)

line shows the approximation to order five supposing we have a

spherical microphone array of order five. It is a good approxima-

tion for frequencies until about 2KHz. It is also a relatively close

approximation until 4KHz which may be used in spatial speech

acquisition and reproduction. The blue (dash) line shows the ap-

proximation to order 10, which closely matches the measurement

until about 6KHz. The phases are compared in Fig. 2.

For efficient implementation in practice, the beamformer should

be approximated at different orders for different frequency bands.

In [9], we described a hemispherical microphone array as shown

in Fig. 3, which is used to record 3D auditory scenes in our ex-

periments. The experimental results using a hemispherical micro-

phone array are posted online2.

7. SUMMARY

In summary, we have developed the theory of reproducing 3D au-

ditory scene using headphones from recordings of a spherical mi-

crophone array. We use the spherical microphone array since it

2http://www.umiacs.umd.edu/~zli/hemisphere/
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provides a natural way to decompose the 3D soundfield in orthogo-

nal beam-space which will be used to approximate the HRTF mea-

surements. The advantage of our method lies in its independence

of the sound source locations and the surrounding environment,

only if under the far-field assumption. Preliminary design exam-

ples are presented to justify our approach. Experimental results

using the recordings from our hemispherical array are presented

online. Future work may include reduced-dimensional description

of HRTF measurements, efficient data structure, extension to near-

field case, etc.

Table surface

Table surface

Hemispherical microphone array

Fig. 3. A hemispherical microphone array built on the surface of a

half bowling ball. Its radius is 10.925cm.
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