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ABSTRACT

In this paper a non-linear extension to the synthetic discrimi-
nant function (SDF) is proposed. The SDF is a well known 2-
D correlation filter for object recognition. The proposed non-
linear version of the SDF is derived from kernel-based lear-
ning. The kernel SDF is implemented in a nonlinear high di-
mensional space by using the kernel trick and it can impro-
ve the performance of the linear SDF by incorporating the
image’s class higher order moments. We show that this ker-
nelized composite correlation filter has an intrinsic connecti-
on with the recently proposed correntropy function. We apply
this kernel SDF to face recognition and simulations show that
the kernel SDF significantly outperforms the traditional SDF
as well as is robust in noisy data environments.

1. INTRODUCTION

Correlation filters have been applied successfully to target de-
tection and recognition problems such as automatic target de-
tection (ATR) [1] and face image recognition [2]. Object re-
cognition is performed by cross-correlating an input image
with a synthesized template (filter) and the correlation out-
put is searched for the peak, which is used to determine whe-
ther the object of interest is present or not. It is well known
that matched filters are the optimal linear filters for signal de-
tection under linear channel and white noise conditions [3].
For image detection, matched spatial filters (MSF) are opti-
mal in the sense that they provide the maximum output signal
to noise ratio (SNR) for the detection of a known image in the
presence of white noise, under the reasonable assumption of
Gaussian statistics [4]. However, the performance of the MSF
is very sensitive to even small changes in the reference image
and the MSF cannot be used for multiclass pattern recognition
since the MSF is only optimum for a single image. Therefo-
re distortion invariant composite filters have been proposed in
various papers [1].

The most well known of such composite correlation fil-
ters are the synthetic discriminant function (SDF) [5] and its
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variations. In the conventional SDF approach, the filter is mat-
ched to a composite image that is a linear combination of the
training image vectors such that the cross correlation output
at the origin has the same value with all training images. The
hope is that this composite image will correlate equally well
not only with the training images but also with other distor-
ted versions of that training images, even with test images in
the same class. The shortcomings of the conventional SDF
are that the SDF does not consider any input noise and it has
a poor rejecting ability for out of class images since it con-
trols only a single point in the output correlation plane. Mini-
mum variance SDF (MVSDF) filter has been proposed in [6]
taking into consideration additive input noise. The MVSDF
minimizes the output variance due to zero-mean input noise
while satisfying the same linear constraints as the SDF. One
of major difficulty in MVSDF is that we often do not know
the noise covariance exactly; even when we do know it, we
need its inversion and it may be computationally impossible
in practice. Another correlation filter that produces a sharp
correlation peak is the minimum average correlation energy
(MACE) filter [7]. The MACE minimizes the average corre-
lation energy of the output over the training images subject to
the same linear constraints as the SDF filters.

Most of these are linear correlation filters. A nonlinear
extension to MACE filter has been proposed in [8]. Recently,
kernel based learning algorithms have been exploited due to
the fact that linear algorithms can be easily extended to non-
linear versions by the kernel method [9]. The kernel matched
spatial filter (KMSF) has been proposed for hyperspectral tar-
get detection in [10]. A new generalized correlation function,
called correntropy, defined in a nonlinear reproducing kernel
Hilbert space (RKHS) has been proposed in [11] and its app-
lication to the matched filter has been presented in [12].

In this paper we propose a new kernel SDF using a Mercer
kernel. In section 2, the conventional SDF filter is reviewed
briefly. In section 3, we propose a new kernel SDF and show
the connection with the correntropy. In section 4, we present
simulation results for face recognition and section 5 summa-
rizes and points out some further research.



2. SYNTHETIC DISCRIMINANT FUNCTION

We consider a 2-dimensional image data as a d × 1 column
vector x, where d is the number of pixel in the image. This
1-dimensional image data can be obtained by lexicographic
ordering the image rows. The SDF filter is matched to a com-
posite image h, where h is a linear combination of the training
image vectors

h =
N∑

i=1

aixi, (1)

where N is the number of training images and the coefficients
ai are chosen to satisfy the following constraints

hT xj = uj , j = 1, 2, · · · , N, (2)

where T denotes the transpose and uj is a desired cross corre-
lation output peak value. In vector form, we define the training
image data matrix X as

X = [x1, x2, · · · , xN ], (3)

where the size of matrix X is d × N . Then the SDF is the
solution to the following optimization problem

min hT h, subject to XT h = u. (4)

It is assumed that N < d and so the problem formulation is a
quadratic optimization subject to an under-determined system
of linear constraints. The optimal solution is

h = X(XT X)−1u. (5)

Once h is determined, we apply an appropriate threshold
to the output of the cross correlation, which is the inner pro-
duct of the test input image and the filter h and decide on the
class of the test image.

3. KERNEL BASED METHOD

3.1. Kernel method

The basic idea of kernel algorithm is to transform the data
xi from the input space to a high dimensional feature space
of vectors Φ(xi), where the inner products can be computed
using a positive definite kernel function satisfying Mercer’s
condition [9],

k(x, y) =< Φ(x), Φ(y) > . (6)

This simple and elegant idea allows us to obtain nonlinear
versions of any linear algorithm expressed in terms of inner
products, without even knowing the exact mapping function
Φ. A particularly interesting characteristic of the feature space
is that it is reproducing kernel Hilbert space (RKHS).

In this paper, we use the Gaussian kernel, which is the
most widely used Mercer kernel,

k(x− y) =
1√
2πσ

exp− (
‖x− y‖2

2σ2
). (7)

3.2. Kernel SDF

Based on the kernel methodology, the previous optimization
problem for the SDF can be solved in a higher dimensional
kernel feature space by transforming each element of the ma-
trix of exemplars X to Φ(Xij) and h to Φ(h), thus forming a
higher dimensional matrix Φ(X) whose ijth feature vector is
Φ(Xij).

Then we can extend the SDF optimization problem to the
nonlinear feature space by

minΦT (h)Φ(h), subject to ΦT (X)Φ(h) = u. (8)

where the dimensions of the transformed Φ(X) and Φ(h) are
∞×N and∞×1, respectively for the Gaussian kernel. Then
the solution in kernel space becomes

Φ(h) = Φ(X)(ΦT (X)Φ(X))−1u. (9)

We denote KXX = ΦT (X)Φ(X) ,which is a N ×N full rank
matrix whose ijth element is given by

(KXX)ij =
d∑

k=1

k(xki, xkj), i, j = 1, 2, · · · , N. (10)

Although Φ(h) is a infinite dimensional vector, the output of
this filter is going to be an N × 1, which can be easily com-
puted using these kernels.

Let Z be the matrix of vector images for testing and its
number of testing images are L. We denote KZX = ΦT (Z)Φ(X),
which is L×N matrix whose each element is given by

(KZX)ij =
d∑

k=1

k(zki, xkj), i = 1, 2, · · · , L, j = 1, 2, · · · , N. (11)

Then the L× 1 output vector of the kernel SDF is given by

y = ΦT (Z)Φ(h) = KZXK−1
XXu. (12)

By applying an appropriate threshold to the output in (12),
we can detect and recognize the testing data without genera-
ting the composite filter in a feature space.

Here, we can see that this kernel SDF is related to corren-
tropy. Correntropy, as proposed in [11], is a positive definite
function that generalizes the correlation function to nonline-
ar (non Gaussian) manifolds. The correntropy of the random
process x(t) at instances t1 and t2 is defined as

V (t1, t2) = E[k(xt1 , xt2)], (13)

where E is the expectation operator and k is a kernel func-
tion that obeys the Mercer’s conditions. The values in (10)
are the cross correntropy between ith training image and jth
training image at the zero lag and the values in (11) are the
cross correntropy between ith testing image and jth training
image at the zero lag. Then we can say that the output of the
kernel SDF is related to the zero-lag correntropy between test
images and training images. Therefore, the kernel SDF gene-
ralizes the correlation at the zero lag in the nonlinear feature
space.
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Fig. 1. Sample images: (a)person A (b) person B (c) person C (d) person C
with additive Gaussian noise (SNR=10db).

4. SIMULATIONS

In this section, we show the performance of the proposed ker-
nel based SDF filter for face image recognition. In the simula-
tions, we used the facial expression database collected at the
Advanced Multimedia Processing Lab at the Electrical and
Computer Engineering Department of CMU [13]. The data-
base consists of 13 subjects, whose facial images were cap-
tured with 75 varying expressions. The size of each image
is 64×64. Sample images are depicted in Fig. 1. The sam-
ple images with additive Gaussian noise with 10 dB SNR are
shown in Fig. 1(c). Only three images per person were uti-
lized for training one SDF per person. In order to evaluate
the performance of the SDF in this data set, we examined
975(13×75) correlation outputs. From these results and the
ones reported in [2] as well as due to paper size limitati-
ons, we picked and report the results on only two person’s
who produced the worst performance with the conventional
SDF method. We test with all the images of each person’s
data set resulting in 150 outputs for each class. The simula-
tion results have been obtained by averaging (Monte-Carlo
approach) over 100 randomly chosen training sets to minimi-
ze the problem of performance differences due to splitting the
relatively small database in training and testing sets.

Fig. 2 shows the average output peak values for image re-
cognition when we use only N = 3 images as training. The
desired output peak value should be close to one when the
test image belongs to the training image class. Fig. 2 (Top)
shows that the correlation output peak values of the conven-
tional SDF in both true and false classes not only overlap but
are also close to one. As a result the system will have great
difficulty to recognize these two individuals because they can
be interpreted as belonging to the same class. Fig. 2 (Bottom)
shows the output values of kernel SDF and we can see that the
two images can be recognized well even with a small number
of training images. Fig. 3 shows the ROC curves with diffe-
rent number of training images (N ). In the kernel SDF with
N = 3, the probability of detection with zero false alarm rate
is 1. However, the conventional SDF needs at least 25 images
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Fig. 2. The output peak values when only 3 images are used for training
(N=3), (Top): Conventional SDF, (Bottom): Kernel SDF.

Fig. 3. The comparison of ROC curves with different number of training
images (N).
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Fig. 4. The output values of noisy test input images with additive Gaussi-
an noise when 25 images are used for training (N=25),(Top): Conventional
SDF, circle-true class with SNR=10dB, cross-false class with SNR=-2dB,
diamond-false class with no noise, (Bottom): kernel SDF, circle-true class
with SNR=10dB, cross-false class with SNR=-2dB.
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Fig. 5. The ROC curves of noisy test input images with different SNRs when
10 images are used for training (N=10).

for training in order to have the same detection performance
as the kernel SDF.

One of major problems of the conventional SDF is that the
performance can be easily degraded by additive noise in the
test image since SDF does not have any special mechanism to
consider input noise. Therefore, it has a poor rejecting abili-
ty for a false class image. Fig. 4 (Top) shows the noise effect
on the conventional SDF. When the class images are serious-
ly distorted by additive Gaussian noise with a very low SNR
(-2dB), the correlation output peaks of some test images be-
come great than 1, hence wrong recognition happens. The re-
sults in Fig. 4 (Bottom) are obtained by the kernel SDF. The
kernel SDF shows a much better performance even in a very
low SNR environment. The comparison of ROC curves bet-
ween the kernel SDF and the conventional SDF in the case of
noisy test input with different SNRs is shown in Fig. 5. We
can see that the kernel SDF outperforms the SDF and achie-
ves a robust pattern recognition performance in a very high
noisy environment.

5. CONCLUSIONS

In this paper, we have proposed and evaluated a kernel ba-
sed nonlinear SDF method for object recognition. We presen-
ted experimental results for face recognition. Using the ker-
nel trick, the nonlinear version of SDF can be easily imple-
mented in a higher dimensional feature space and this kernel
SDF overcomes the two main shortcomings of the conventio-
nal SDF; one is poor rejecting performance and the other is
the effect of the input noise. Simulation results show that the
detection and recognition performance of the kernel SDF is
much better than that of the SDF in particular with a small
number of training data, which indicates that the filter gene-
ralizes better. The kernel SDF is also robust in a higher input
noise data environment. Although we have focused this study
on the SDF, we think that similar ideas could be applied to its

variants such as MVSDF and MACE filter by exploiting the
correntropy function. Tests in more difficult datasets are al-
so needed to fully characterize the performance of the kernel
SDF.
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