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ABSTRACT and multidimensional scaling (MDS) [3, 4]. In PCA, an eigende-
composition of thel x d empirical covariance matrix is performed

In this paper, we evaluate the contribution of the classification conynd the data points are linearly projected alongithe< d eigen-
strained dimensionality reduction (CCDR) algorithm to the perfor-yectors with the largest eigenvalues. A problem that may occur with
mance of several classifiers. We present an extension to previouscA for classification is demonstrated in Fig. 1. When the informa-
introduced CCDR algorithm to multiple hypotheses. We investi-tion that is relevant for classification is present only in the eigenvec-
gate classification performance using the CCDR algorithm on hypetprs associated with the small eigenvaluesif the figure), removal
spectral satellite imagery data. We demonstrate the performangg such eigenvectors may result in severe degradation in classifica-
gain for both local and global classifiers and demonstrat#/aim-  tion performance. In MDS, the goal is to find a lower dimensional
provement of thet-nearest neighbors algorithm performance. Weempedding of the original data points that preserves the relative dis-
present a connection between intrinsic dimension estimation and thgnces between all the data points. The two methods suffer greatly
optimal embedding dimension obtained using the CCDR algorithmyhen the manifold is nonlinear. For example, PCA will not be able
to offer dimensionality reduction for classification of two classes ly-
ing each on one of two concentric circles.

In the seminal paper of Tenenbaetral [5], Isomap, a global di-
mensionality reduction algorithm was introduced taking into account
the fact that data points may lie on a lower dimension manifold. Un-
like for MDS, geodesic distances (distances that are measured along

ifold in X with a dimension lower or equal to that &f (e.g., the the manifold) are pr_eserved by Isomap. Be_lkin and l_\liyogi presenta
unit circle in the x-y plane or the x-axis in the x-y plane). Whitney’s related Lapla(_:lan eigenmaps dl_m_en_5|0(1allty reducthn algorithm in
theorem states that every smodtdimensional manifold admits an [6]- The algorithm performs a minimization on the weighted sum of
embedding intdR 221, This motivates the approach taken by kernel Sduared-distances of the lower-dimensional data. Each weight mul-
methods such as support vector machines [1]. Clearly, there exist 4p!Ying the squared-distances of two low-dimensional data points is
embedding to a higher dimensional space (R#%1). Our interest m_versel_y related to gllstance between the corresponding two high-
is in finding an embedding into a lower dimensional space. dimensional data points. _

The algorithms mentioned above consider the problem of learn-
ing a lower-dimensional embedding of the data. In classification,
such algorithms can be used to preprocess high-dimensional data be-
6f ] fore performing the classification. This could potentially allow for a
lower computational complexity of the classifier. In some cases, di-
mensionality reduction results in increased computational complex-
ity of the classifier. To guarantee a low computational complexity
of the classifier of the low-dimensional data, a classification con-
strained dimensionality reduction (CCDR) algorithm was introduced
in [7]. The CCDR algorithm is an extension of Laplacian eigenmaps
[6] and it incorporates class label information into the cost function,
reducing the distance between points with similar label.

In [7] the CCDR algorithm was only studied for two classes and
its performance was illustrated for simulated data. In this paper, we
introduce an extension of the algorithm to the multi-class problem

1. INTRODUCTION

In classification, the goal is to find a mapping from the dom&in
to one of several hypotheses based on observations thattie in
some problems, the observations from the donfgitie on a man-

@

B 4 2 o 2 4 & s and present experimental results for the Landsat MSS imagery data
[8]. We study the algorithm performance as its various parameters,
Fig. 1. PCA of a two-classes classification problem. (e.g., dimension, label importance, and local neighborhood) are v

ied. We study the performance of CCDR as preprocessing prior to
gzplementation of several classification algorithms suchrasarest
eighbors, linear classification, and neural networks. We demon-
trate al0% improvement over thé-nearest neighbors algorithm
This work was partially funded by the DARPA Defense Sciero#ie p_erform_ance t_)enc_hmark fpr this dataset. We E}ddress the issue of
under Office of Naval Research contract #N00014-04-C-0&83tribution  dimension estimation and its effect on classification performance.
Statement A. Approved for public release; distribution ifimaited. The organization of this paper is as follows. Section 2 presents

Dimensionality reduction of high dimensional data, was addressj
in classical methods such as principal component analysis (PCA) [23




the multiple-class CCDR algorithm. Section 3 provides a study of 3. ALGORITHM STUDY
the algorithm using the Landsat dataset and Section 4 summaries our

results. In this section, we present a performance study of three classical
classification algorithms on data after CCDR preprocessing. First,
2. CLASSIFICATION CONSTRAINED DIMENSIONALITY we provide a brief description of the algorithms.
REDUCTION

Here, we review the CCDR algorithm [7] and extend it to multi-class
classification.

Let X, = {x1,22,...,x,} be a set ofn points constrained
to lie on anm-dimensional submanifoldM C R?. Each point
x; € M is either associated with a class label, be.has labekt; €
{A1, Az,..., AL}, or is unlabeled. Our goal is to obtain a lower-
dimensional embeddiny, = {y;,v,,...,¥,} (Wherey, € R™
with m < d) that preserves local geometry while clustering points
with the same labels to improve the performance of classifiers based
on the lower-dimensional data.

First, an adjacency matri¥¥ is constructed as follows: For X
k € N, ak-nearest neighbors graph is constructed with the points (a) PCA
in X,, as the graph vertices. Each point is connected to it%-
nearest neighboring points. For a fixed scale parametero, the
weight associated with the two points and x; satisfiesw;; =
exp {—||x; — x;||*/e} if ; andx; are connected and;; = 0
otherwise.

To cluster points of the same label we associate each class with a
class center namely, € R™. LetC be theL xn class membership
matrix with the ki-th elementcy; = 1if ¢; = A, andcg; = 0
otherwise. Ifz; is unlabeled them,; = 0 for all k. We construct
the following cost function:

5
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whereZr = {z1,...,zr} andg > 0is aregularization parameter.
Large values off produce an embedding that ignores class labels and
small values of3 produce an embedding that ignores the manifold
structure. Our goal is to fin€, and ), that minimize the cost (b) CCDR
function in (1).
Let Z = [z1,...,20,Y;1,---,Y,), I be theL x L identity  Fig. 2. Three-dimensional projection of the (a) PCA and (b) CCDR

matrix and lower-dimensional embedding of the Landsat MSS satellite imagery
w' = [ IT c } ) dataset. Classes 1, 2, 3, 4, 5, and 6, are markedwith +, o, A,
¢ W andy, respectively. Test data points are marked by dots.
Minimization overZ of the cost function in (1) can be expressed as
min  tr (ZLZT) , @) o _
ZD1=0 3.1. Classification Algorithms
ZDZT =1

We consider three widespread algorithrhsnearest neighbors, lin-
whereD = diag(W’1) andL = D — W’. To prevent the lower-  ear classification, and neural networks. A standard implementation
dimensional points and the class centers from collapsing into a siref k-nearest neighbors was used, see [1, p. 415]. The linear classifier
gle point at the origin, the regularizatighD Z7 = I is introduced. ~we implemented is given by
The second constraif D1 = 0 is constructed to prevent a de-

i — — _ _ _ i A — T (e)
generate solution, e.gz1 = ... = zp =y, = ... = y,,. This ély) = arg max Yy« + ag
solution may occur since is in the null-space of the Laplaciah et AL
operator, i.e.L1 = 0. The solution to (2) isZ that satisfies the (A (AT NS T 2
generalized eigendecomposition given by [o7*ag™] = arg (o rcre] ;(yi o+ a0 = exi)",
LZ" = DZ"diag(\). 3 : :
iag(A) ®) for k = 1,..., L. The neural network we implemented is a three-

Specifically, matrixZ is given by the generalized eigenvectors assodayer neural network witll elements in the input laye2d elements
ciated with them smallest positive generalized eigenvalues, wheran the hidden layer, and elements in the output layer (one for each
the first rows correspond to the coordinates of the class centers awthss). Her@ was selected using the common PCA procedure, as the
the following rows determine the embedding of the original datasmallest dimension that explaif9.9% of the energy of the data.
points. A gradient method was used to train the network coefficients with



2000 iterations. The neural net is significantly more computationally ~ We perform a similar study of classification performancekfor
burdensome than either linear lomnearest neighbors classifications nearest neighbors. In Fig. 3, classification probability error is plotted

algorithms. (dotted lines) vs3. Here, we observed that an average error prob-
ability of 0.086 can be achieved fgf ~ 0.5. Therefore k-nearest
3.2. Data Description neighbors preceded by CCDR outperforms the straightforvkard

_ _ _ o nearest neighbors algorithm. We also observe that whénde-
In this section, we examine the performance of the classification alreased the probability of error is increased. This can be explained
gorithms on the benchmark label classification problem provided bys due to the ability of-nearest neighbors to utilize local informa-
the Landsat MSS satellite imagery database [8]. Each sample poifign, i.e., local geometry. This information is discarded witkis
consists of the intensity values of one pixel and its 8 neighboringjecreased.
pixels in 4 different spectral bands. The training data consists of \we conclude that CCDR can generate lower-dimensional data
4435 36-dimensional points of which, 1072 are labeled as 1) reghat is useful for global classifiers, such as the linear classifier, by
soil, 479 as 2) cotton crop, 961 as 3) grey soil, 415 as 4) damp greysing a small value of, and also for local classifiers, such las

labeled as 6) very damp grey soil. The test data consists of 2009sometry information.

36-dimensional points of which, 461 are labeled as 1) red soil, 22

as 2) cotton crop, 397 as 3) grey soil, 211 as 4) damp grey soil, 237 024

are labeled as 5) soil with vegetation stubble, and 470 are labeled as

6) very damp grey soil. In the following, each classifier is trained 0.2% ]
on the training data and its classification is evaluated based on the 0_27\‘ ]
entire sample test data. In Table 1, we present “best case” perfor- .

mance of neural networks, linear classifier, &dearest neighbors 0.18 R 1

in three cases: no dimensionality reduction, dimensionality reduc-
tion via PCA, and dimensionality reduction via CCDR. The table
presents the minimum probability of error achieved by varying the 0.14- : R 1
tuning parameters of the classifiers. The benefit of using CCDR is v T L
obvious and we are prompted to further evaluate the performance

gains attained using CCDR. °E§ éé@ééé@@ tS g_ﬁé-i%_%gé-

P(error)

N

S+ 2O L
HOHX%O

| Neural Net.|  Lin. | k-nearest neigh.
No dim. reduc. 83% | 22.7% 9.65 % 0.06— - ,
PCA 9.75% | 23% 9.35 % 10 E 10
CCDR 8.95% | 8.95% 8.1%
Table 1. Classification error probability Fig. 3. Probability of incorrect classification v8.for a linear classi-

fier (dotted lineo) and for thek-nearest neighbors algorithm (dashed
line ¢) preprocessed by CCDR0% confidence intervals are pre-
3.3. Regularization Parameters sented as for the linear classifier and as for the k-nearest neigh-
bors algorithm.
As mentioned earlier, the CCDR regularization paramétesntrols
the contribution of the label information versus the contribution of
the geometry described by the sample. We apply CCDR to the 36;
dimensional data to create a 14-dimensional embedding by varyin
8 over a range of values. For justification of our choicelof 14 While the data points irt,, may lie on a manifold of a particular
dimensions see Section 3.4. In the process of computing the weighgmension, the actual dimension required for classification may be
w;; for the algorithm, we usé-nearest neighbors with = 410 smaller. Here, we examine classification performance as a function
determine the local neighborhood. Fig. 3 shows the classificatiogf the CCDR dimension. Using the entropic graph dimension esti-
error probability (dashed lines) for the linear classifier safter  mation algorithm in [9], we obtain the following estimated dimen-
preprocessing the data using CCDR witk= 4 and dimension 14. sjon for each class:
We observe that for a large range®the average classification er-
ror probability is greater thaf.09 but smaller thar0.095. This [ class [[1]2] 3] 4]5] 6|
performance competes with the performancé-ofearest neighbors | dimension“ 13 [ 7 [ 13 [ 10 [ 6 [ 13 |
applied to the high-dimensional data, which is presented in [1] as the
leading classifier for this benchmark problem. Another observatioherefore, if an optimal nonlinear embedding of the data could be
is that for small values g8 (i.e., 3 < 0.1) the probability of erroris  found, we suspect that a dimension greater thamay not yield
constant. For such small value@fclasses in the lower-dimensional significant improvement in classification performance. Since CCDR
embedding are well-separated and are well-concentrated around tHees not necessarily yield an optimal embedding, we choose CCDR
class centers. Therefore, the linear classifier yields perfect classifémbedding dimension as= 14 in Section 3.3.
cation on the training set and fairly low constant probability of error  In Fig. 4, we plot the classification error probability (dotted line)
on the test data is attained for low value®fWheng is increased, vs. CCDR dimension and its confidence interval for a linear clas-
we notice an increase in the classification error probability. This isifier. We observed decrease in error probability as the dimension
due to the fact that the training data become non separable by aimycreases. When the CCDR dimension is greater thahe error
linear classifier ag increases. probability seems fairly constant. This is an indication that CCDR

4. Dimension Parameter
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The last parameter we examine is the CCDRIsearest neigh-
bors parameter. In general, Asncreases non-local distances are
included in the lower-dimensional embedding. Hence, very large
k prevents the flexibility necessary for dimensionality reduction on
(globally) non-linear (but locally linear) manifolds.

In Fig. 5, the classification probability of error for the linear clas-
sifier (dotted line) is plotted vs. the CCDRisnearest neighbors
parameter. A minimum is obtained At= 3 with probability of
error 0of0.092. The classification probability of error fdr-nearest
neighbors (dashed line) is plotted vs. the CCDR'searest neigh-
bors parameter. A minimum is obtainedkat= 4 with probability of
error 0f0.086.

4. CONCLUSION

In this paper, we presented the CCDR algorithm for multiple classes.
We examined the performance of various classification algorithms

Fig. 4. Probability of incorrect classification vs. CCDR’s dimension applied after CCDR for the Landsat MSS imagery dataset. We showed

for a linear classifier (dotted ling) and for thek-nearest neighbors
algorithm (dashed line) preprocessed by CCDR0% confidence
intervals are presented asfor the linear classifier and as for the
k-nearest neighbors algorithm.

that for a linear classifier, decreasifigields improved performance
and for ak-nearest neighbors classifier, increasihgelds improved
performance. We demonstrated that both classifiers have improved
performance on the much smaller dimension of CCDR embedding
space than when applied to the original high-dimensional data. We
also explored the effect df in the k-nearest neighbors construction

dimension of5 is sufficient for classification if one uses the linear of CCDR weight matrix on classification performance. CCDR al-
classifier with3 = 0.5, i.e., linear classifier cannot exploit geome- |ows reduced complexity classification such as the linear classifier to

try.

perform better than more complex classifiers applied to the original

We also plot the classification error probability (dashed line) vsdata. We are currently pursuing an out-of-sample extension to the

CCDR dimension and its confidence interval kenearest neighbors

algorithm that does not require rerunning CCDR on test and training

classifier. Generally, we observe decrease in error probability as theata to classify new test point.

dimension increases. When the CCDR dimension is greatersthan
the error probability seems fairly constant. When CCDR dimension

is three, classifier error is belov1. On the other hand, minimum

5. REFERENCES

possibility of error obtained at CCDR dimension 12-14. This is r€[1] T. Hastie, R. Tibshirani, and J. FriedmariThe Elements of

markable agreement with the dimension estimate3adbtained us-
ing the entropic graph algorithm of [9].

3.5. CCDR'sk-Nearest Neighbors Parameter

0.2

P(error)
o
B

0.1+ \% %/
0.01

Fig. 5. Probability of incorrect classification vs. CCDRsnearest
neighbors parameter for a linear classifier (dotted hjend for
the k-nearest neighbors algorithm (dashed krepreprocessed by
CCDR.80% confidence intervals are presented>asor the linear
classifier and ag- for the k-nearest neighbors algorithm.

Satistical Learning Data Mining, Inference, and Prediction,
Springer Series in Statistics. Springer Verlag, New York, 2000.

A. K. Jain and R. C. Dubes,Algorithms for clustering data,
Prentice Hall, New Jersey, 1998.

W. S. Torgerson, “Multidimensional scaling: 1. theory and
method,” Psychometrika, vol. 17, pp. 401-419, 1952.

T. F. Cox and M. A. A. Cox,Multidimensional Scaling, vol. 88
of Monographs on Statistics and Applied Probability, Chapman
& Hall/CRC, London, second edition, 2000.

[5] J. B. Tenenbaum, V. De Silva, and J. C. Langford, “A global
geometric framework for nonlinear dimensionality reduction.,”
Science, vol. 290, no. 5500, pp. 2319-2323, 2000.

M. Belkin and P. Niyogi, “Laplacian eigenmaps for dimension-
ality reduction and data representatiorijeural Computation,
vol. 15, no. 6, pp. 1373-1396, June 2003.

[7] J. A. Costa and A. O. Hero Ill, “Classification constrained di-
mensionality reduction,” ifProc. IEEE Intl. Conf. on Acoust.,
Fpeech, and Sgnal Processing, March 2005, vol. 5, pp. 1077—
1080.

[8] “Satellite image data,” available at
http://ww.liacc. up.pt/M/statl og/ datasets/
sat i mage/ sati nage. doc. htni .

[9] J. A. Costa and A. O. Hero, “Geodesic entropic graphs for di-
mension and entropy estimation in manifold learningEZEE
Trans. Sgnal Processing, vol. 52, no. 8, pp. 2210-2221, Aug.
2004.

(2]
(3]
(4]

(6]



