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ABSTRACT

In this paper, we evaluate the contribution of the classification con-
strained dimensionality reduction (CCDR) algorithm to the perfor-
mance of several classifiers. We present an extension to previously
introduced CCDR algorithm to multiple hypotheses. We investi-
gate classification performance using the CCDR algorithm on hyper-
spectral satellite imagery data. We demonstrate the performance
gain for both local and global classifiers and demonstrate a10% im-
provement of thek-nearest neighbors algorithm performance. We
present a connection between intrinsic dimension estimation and the
optimal embedding dimension obtained using the CCDR algorithm.

1. INTRODUCTION

In classification, the goal is to find a mapping from the domainX
to one of several hypotheses based on observations that lie inX . In
some problems, the observations from the domainX lie on a man-
ifold in X with a dimension lower or equal to that ofX (e.g., the
unit circle in the x-y plane or the x-axis in the x-y plane). Whitney’s
theorem states that every smoothd-dimensional manifold admits an
embedding intoR2d+1. This motivates the approach taken by kernel
methods such as support vector machines [1]. Clearly, there exist an
embedding to a higher dimensional space (i.e.,R2d+1). Our interest
is in finding an embedding into a lower dimensional space.
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Fig. 1. PCA of a two-classes classification problem.

Dimensionality reduction of high dimensional data, was addressed
in classical methods such as principal component analysis (PCA) [2]
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and multidimensional scaling (MDS) [3, 4]. In PCA, an eigende-
composition of thed × d empirical covariance matrix is performed
and the data points are linearly projected along them ≤ d eigen-
vectors with the largest eigenvalues. A problem that may occur with
PCA for classification is demonstrated in Fig. 1. When the informa-
tion that is relevant for classification is present only in the eigenvec-
tors associated with the small eigenvalues (e2 in the figure), removal
of such eigenvectors may result in severe degradation in classifica-
tion performance. In MDS, the goal is to find a lower dimensional
embedding of the original data points that preserves the relative dis-
tances between all the data points. The two methods suffer greatly
when the manifold is nonlinear. For example, PCA will not be able
to offer dimensionality reduction for classification of two classes ly-
ing each on one of two concentric circles.

In the seminal paper of Tenenbaumet al [5], Isomap, a global di-
mensionality reduction algorithm was introduced taking into account
the fact that data points may lie on a lower dimension manifold. Un-
like for MDS, geodesic distances (distances that are measured along
the manifold) are preserved by Isomap. Belkin and Niyogi present a
related Laplacian eigenmaps dimensionality reduction algorithm in
[6]. The algorithm performs a minimization on the weighted sum of
squared-distances of the lower-dimensional data. Each weight mul-
tiplying the squared-distances of two low-dimensional data points is
inversely related to distance between the corresponding two high-
dimensional data points.

The algorithms mentioned above consider the problem of learn-
ing a lower-dimensional embedding of the data. In classification,
such algorithms can be used to preprocess high-dimensional data be-
fore performing the classification. This could potentially allow for a
lower computational complexity of the classifier. In some cases, di-
mensionality reduction results in increased computational complex-
ity of the classifier. To guarantee a low computational complexity
of the classifier of the low-dimensional data, a classification con-
strained dimensionality reduction (CCDR) algorithm was introduced
in [7]. The CCDR algorithm is an extension of Laplacian eigenmaps
[6] and it incorporates class label information into the cost function,
reducing the distance between points with similar label.

In [7] the CCDR algorithm was only studied for two classes and
its performance was illustrated for simulated data. In this paper, we
introduce an extension of the algorithm to the multi-class problem
and present experimental results for the Landsat MSS imagery data
[8]. We study the algorithm performance as its various parameters,
(e.g., dimension, label importance, and local neighborhood), are var-
ied. We study the performance of CCDR as preprocessing prior to
implementation of several classification algorithms such ask-nearest
neighbors, linear classification, and neural networks. We demon-
strate a10% improvement over thek-nearest neighbors algorithm
performance benchmark for this dataset. We address the issue of
dimension estimation and its effect on classification performance.

The organization of this paper is as follows. Section 2 presents



the multiple-class CCDR algorithm. Section 3 provides a study of
the algorithm using the Landsat dataset and Section 4 summaries our
results.

2. CLASSIFICATION CONSTRAINED DIMENSIONALITY
REDUCTION

Here, we review the CCDR algorithm [7] and extend it to multi-class
classification.

Let Xn = {x1, x2, . . . , xn} be a set ofn points constrained
to lie on anm-dimensional submanifoldM ⊆ Rd. Each point
xi ∈ M is either associated with a class label, i.e.,xi has labelci ∈
{A1,A2, . . . ,AL}, or is unlabeled. Our goal is to obtain a lower-
dimensional embeddingYn = {y1, y2, . . . , yn} (whereyi ∈ Rm

with m < d) that preserves local geometry while clustering points
with the same labels to improve the performance of classifiers based
on the lower-dimensional data.

First, an adjacency matrixW is constructed as follows: For
k ∈ N, a k-nearest neighbors graph is constructed with the points
in Xn as the graph vertices. Each pointxi is connected to itsk-
nearest neighboring points. For a fixed scale parameterǫ > 0, the
weight associated with the two pointsxi and xj satisfieswij =
exp

˘

−‖xi − xj‖
2/ǫ

¯

if xi andxj are connected andwij = 0
otherwise.

To cluster points of the same label we associate each class with a
class center namelyzk ∈ Rm. LetC be theL×n class membership
matrix with theki-th elementcki = 1 if ci = Ak and cki = 0
otherwise. Ifxi is unlabeled thencki = 0 for all k. We construct
the following cost function:

J(ZL,Yn) =
X

ki

cki ‖zk − yi‖
2 +

β

2

X

ij

wij ‖yi − yj‖
2, (1)

whereZL = {z1, . . . , zL} andβ ≥ 0 is a regularization parameter.
Large values ofβ produce an embedding that ignores class labels and
small values ofβ produce an embedding that ignores the manifold
structure. Our goal is to findZL andYn that minimize the cost
function in (1).

Let Z = [z1, . . . , zL, y1, . . . , yn], I be theL × L identity
matrix and

W
′ =

»

I C

CT βW

–

.

Minimization overZ of the cost function in (1) can be expressed as

min
ZD1 = 0

ZDZ
T

= I

tr
“

ZLZ
T

”

, (2)

whereD = diag(W ′
1) andL = D − W ′. To prevent the lower-

dimensional points and the class centers from collapsing into a sin-
gle point at the origin, the regularizationZDZT = I is introduced.
The second constraintZD1 = 0 is constructed to prevent a de-
generate solution, e.g.,z1 = . . . = zL = y1 = . . . = yn. This
solution may occur since1 is in the null-space of the LaplacianL
operator, i.e.,L1 = 0. The solution to (2) isZ that satisfies the
generalized eigendecomposition given by

LZ
T = DZ

T diag(λ). (3)

Specifically, matrixZ is given by the generalized eigenvectors asso-
ciated with them smallest positive generalized eigenvalues, where
the first rows correspond to the coordinates of the class centers and
the following rows determine the embedding of the original data
points.

3. ALGORITHM STUDY

In this section, we present a performance study of three classical
classification algorithms on data after CCDR preprocessing. First,
we provide a brief description of the algorithms.

(a) PCA

(b) CCDR

Fig. 2. Three-dimensional projection of the (a) PCA and (b) CCDR
lower-dimensional embedding of the Landsat MSS satellite imagery
dataset. Classes 1, 2, 3, 4, 5, and 6, are marked with×, ◦, +, ⋄, △,
and⋆, respectively. Test data points are marked by dots.

3.1. Classification Algorithms

We consider three widespread algorithms:k-nearest neighbors, lin-
ear classification, and neural networks. A standard implementation
of k-nearest neighbors was used, see [1, p. 415]. The linear classifier
we implemented is given by

ĉ(y) = arg max
c∈{A1,...AL}

y
T
α

(c) + α
(c)
0

ˆ

α
(Ak), α

(Ak)
0

˜

= arg min
[α,α0]

n
X

i=1

(yT
i α + α0 − cki)

2,

for k = 1, . . . , L. The neural network we implemented is a three-
layer neural network withd elements in the input layer,2d elements
in the hidden layer, and6 elements in the output layer (one for each
class). Hered was selected using the common PCA procedure, as the
smallest dimension that explains99.9% of the energy of the data.
A gradient method was used to train the network coefficients with



2000 iterations. The neural net is significantly more computationally
burdensome than either linear ork-nearest neighbors classifications
algorithms.

3.2. Data Description

In this section, we examine the performance of the classification al-
gorithms on the benchmark label classification problem provided by
the Landsat MSS satellite imagery database [8]. Each sample point
consists of the intensity values of one pixel and its 8 neighboring
pixels in 4 different spectral bands. The training data consists of
4435 36-dimensional points of which, 1072 are labeled as 1) red
soil, 479 as 2) cotton crop, 961 as 3) grey soil, 415 as 4) damp grey
soil, 470 are labeled as 5) soil with vegetation stubble, and 1038 are
labeled as 6) very damp grey soil. The test data consists of 2000
36-dimensional points of which, 461 are labeled as 1) red soil, 224
as 2) cotton crop, 397 as 3) grey soil, 211 as 4) damp grey soil, 237
are labeled as 5) soil with vegetation stubble, and 470 are labeled as
6) very damp grey soil. In the following, each classifier is trained
on the training data and its classification is evaluated based on the
entire sample test data. In Table 1, we present “best case” perfor-
mance of neural networks, linear classifier, andk-nearest neighbors
in three cases: no dimensionality reduction, dimensionality reduc-
tion via PCA, and dimensionality reduction via CCDR. The table
presents the minimum probability of error achieved by varying the
tuning parameters of the classifiers. The benefit of using CCDR is
obvious and we are prompted to further evaluate the performance
gains attained using CCDR.

Neural Net. Lin. k-nearest neigh.
No dim. reduc. 83 % 22.7 % 9.65 %
PCA 9.75 % 23 % 9.35 %
CCDR 8.95 % 8.95 % 8.1 %

Table 1. Classification error probability

3.3. Regularization Parameterβ

As mentioned earlier, the CCDR regularization parameterβ controls
the contribution of the label information versus the contribution of
the geometry described by the sample. We apply CCDR to the 36-
dimensional data to create a 14-dimensional embedding by varying
β over a range of values. For justification of our choice ofd = 14
dimensions see Section 3.4. In the process of computing the weights
wij for the algorithm, we usek-nearest neighbors withk = 4 to
determine the local neighborhood. Fig. 3 shows the classification
error probability (dashed lines) for the linear classifier vs.β after
preprocessing the data using CCDR withk = 4 and dimension 14.
We observe that for a large range ofβ the average classification er-
ror probability is greater than0.09 but smaller than0.095. This
performance competes with the performance ofk-nearest neighbors
applied to the high-dimensional data, which is presented in [1] as the
leading classifier for this benchmark problem. Another observation
is that for small values ofβ (i.e.,β < 0.1) the probability of error is
constant. For such small value ofβ, classes in the lower-dimensional
embedding are well-separated and are well-concentrated around the
class centers. Therefore, the linear classifier yields perfect classifi-
cation on the training set and fairly low constant probability of error
on the test data is attained for low value ofβ. Whenβ is increased,
we notice an increase in the classification error probability. This is
due to the fact that the training data become non separable by any
linear classifier asβ increases.

We perform a similar study of classification performance fork-
nearest neighbors. In Fig. 3, classification probability error is plotted
(dotted lines) vs.β. Here, we observed that an average error prob-
ability of 0.086 can be achieved forβ ≈ 0.5. Therefore,k-nearest
neighbors preceded by CCDR outperforms the straightforwardk-
nearest neighbors algorithm. We also observe that whenβ is de-
creased the probability of error is increased. This can be explained
as due to the ability ofk-nearest neighbors to utilize local informa-
tion, i.e., local geometry. This information is discarded whenβ is
decreased.

We conclude that CCDR can generate lower-dimensional data
that is useful for global classifiers, such as the linear classifier, by
using a small value ofβ, and also for local classifiers, such ask-
nearest neighbors, by using a larger valueβ and thus preserving local
geometry information.
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Fig. 3. Probability of incorrect classification vs.β for a linear classi-
fier (dotted line◦) and for thek-nearest neighbors algorithm (dashed
line ⋄) preprocessed by CCDR.80% confidence intervals are pre-
sented as× for the linear classifier and as+ for thek-nearest neigh-
bors algorithm.

3.4. Dimension Parameter

While the data points inXn may lie on a manifold of a particular
dimension, the actual dimension required for classification may be
smaller. Here, we examine classification performance as a function
of the CCDR dimension. Using the entropic graph dimension esti-
mation algorithm in [9], we obtain the following estimated dimen-
sion for each class:

class 1 2 3 4 5 6

dimension 13 7 13 10 6 13

Therefore, if an optimal nonlinear embedding of the data could be
found, we suspect that a dimension greater than13 may not yield
significant improvement in classification performance. Since CCDR
does not necessarily yield an optimal embedding, we choose CCDR
embedding dimension asd = 14 in Section 3.3.

In Fig. 4, we plot the classification error probability (dotted line)
vs. CCDR dimension and its confidence interval for a linear clas-
sifier. We observed decrease in error probability as the dimension
increases. When the CCDR dimension is greater than5, the error
probability seems fairly constant. This is an indication that CCDR
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Fig. 4. Probability of incorrect classification vs. CCDR’s dimension
for a linear classifier (dotted line◦) and for thek-nearest neighbors
algorithm (dashed line⋄) preprocessed by CCDR.80% confidence
intervals are presented as× for the linear classifier and as+ for the
k-nearest neighbors algorithm.

dimension of5 is sufficient for classification if one uses the linear
classifier withβ = 0.5, i.e., linear classifier cannot exploit geome-
try.

We also plot the classification error probability (dashed line) vs.
CCDR dimension and its confidence interval fork-nearest neighbors
classifier. Generally, we observe decrease in error probability as the
dimension increases. When the CCDR dimension is greater than5,
the error probability seems fairly constant. When CCDR dimension
is three, classifier error is below0.1. On the other hand, minimum
possibility of error obtained at CCDR dimension 12-14. This is re-
markable agreement with the dimension estimate of13 obtained us-
ing the entropic graph algorithm of [9].

3.5. CCDR’sk-Nearest Neighbors Parameter
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Fig. 5. Probability of incorrect classification vs. CCDR’sk-nearest
neighbors parameter for a linear classifier (dotted line◦) and for
the k-nearest neighbors algorithm (dashed line⋄) preprocessed by
CCDR.80% confidence intervals are presented as× for the linear
classifier and as+ for thek-nearest neighbors algorithm.

The last parameter we examine is the CCDR’sk-nearest neigh-
bors parameter. In general, ask increases non-local distances are
included in the lower-dimensional embedding. Hence, very large
k prevents the flexibility necessary for dimensionality reduction on
(globally) non-linear (but locally linear) manifolds.

In Fig. 5, the classification probability of error for the linear clas-
sifier (dotted line) is plotted vs. the CCDR’sk-nearest neighbors
parameter. A minimum is obtained atk = 3 with probability of
error of0.092. The classification probability of error fork-nearest
neighbors (dashed line) is plotted vs. the CCDR’sk-nearest neigh-
bors parameter. A minimum is obtained atk = 4 with probability of
error of0.086.

4. CONCLUSION

In this paper, we presented the CCDR algorithm for multiple classes.
We examined the performance of various classification algorithms
applied after CCDR for the Landsat MSS imagery dataset. We showed
that for a linear classifier, decreasingβ yields improved performance
and for ak-nearest neighbors classifier, increasingβ yields improved
performance. We demonstrated that both classifiers have improved
performance on the much smaller dimension of CCDR embedding
space than when applied to the original high-dimensional data. We
also explored the effect ofk in thek-nearest neighbors construction
of CCDR weight matrix on classification performance. CCDR al-
lows reduced complexity classification such as the linear classifier to
perform better than more complex classifiers applied to the original
data. We are currently pursuing an out-of-sample extension to the
algorithm that does not require rerunning CCDR on test and training
data to classify new test point.
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