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ABSTRACT

We introduce a new similarity measure between data points suited
for clustering and classification on smooth manifolds. The pro-
posed measure is constructed from a dual rooted graph diffusion
over the feature vector space, obtained by growing dual rooted
minimum spanning trees (MST) between data points. This diffu-
sion model for pairwise affinities naturally accommodates the case
where the feature distribution is supported on a lower dimensional
manifold. When this affinity measure is combined with labeled
data, a semi-supervised classifier can be defined that handles both
labeled and unlabeled data in a seamless manner. We will illus-
trate our method for both simulated ground truth and real partially
labeled data sets.

1. INTRODUCTION

Unsupervised learning or clustering have been a research focus of
several communities for the past decades. Many algorithms have
been proposed with varying degrees of success and are widely used
in areas from text categorization/computer vision to genomics [1].
While many strides have been made in the area, there are still
many open problems. Little success has been found in cases in
which clusters do not form convex regions or are not clearly sep-
arated (overlapping). In particular, these scenarios can pose chal-
lenges to methods using Euclidean distances to measure similari-
ties/affinities between data points. In a Euclidean space, a point on
the edge of cluster 1 in Fig. 2 is closer to points in cluster 2 than to
other points in cluster 1. In this case, there is no linear form which
will classify the data satisfactorily.

Several different frameworks have been introduced to address
the clustering problem. Classical solutions include generative mo-
del approaches and the K-means algorithm. In the generative mo-
del case, the data set is assumed to be well modeled by a para-
metric mixture of densities. One then attempts to estimate the
mixture parameters via maximum likelihood or corresponding it-
erative implementations, such as the EM algorithm. Of course,
model assumptions resulting in mathematical tractability and im-
plementable inference algorithms will also result in a loss of capa-
bility of the method to cluster general data sets (that do not fit the
assumed model). Another drawback stems from the usual lack of
convexity of the likelihood function, resulting in an optimization
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problem which can have many local minima. The K-means al-
gorithm, based on minimizing a mean squared error criteria (with
respect to cluster centroids), shares with the previous approach the
same problems in its optimization formulation.

Recently, the focus of attention in unsupervised learning has
turned to spectral clustering methods due to its many successes
[1]. These methods use the spectral content of a similarity ma-
trix of pairwise distances between data samples to learn a partition
of the data set. More specifically, the eigenvectors are viewed as
providing an embedding of the data into a space where it is well
separated and can easily be clustered.

While spectral methods have shown much improvement, there
still remain difficulties. For example, starting from a set of mea-
sured dissimilarities, d(xi, xj) (e.g., Euclidean distance), between
pairs (xi, xj) of data points, several promising spectral methods
[2, 3] use a Gaussian or heat kernel to compute an affinity matrix,
A, according to:

aij = e
−

d2(xi,xj)

2 σ2 . (1)

The kernel width parameter, σ , gives the rate at which the simi-
larity between two points decays. While there are many heuristic
proposals for selecting the kernel parameter σ, there has been little
effort to devise a systematic method for its determination. Com-
plicating this matter, the direct reliance of spectral methods on the
affinity matrix can cause clustering results to show high sensitiv-
ity to the choice of σ. This may lead to trial-and-error or other
heuristic methods involving many re-starts for the selection of σ.

Despite their versatility, spectral methods still have trouble
classifying data sets with non-Euclidean structures. For this we
should seek out a more geometrically descriptive similarity mea-
sure: one that would better describe the global, as well as local,
geometry of the data set. Recent research [4] have investigated
diffusion processes on graphs. These processes are linked to a ran-
dom walk on the graph with nodes consisting of data points. It
is the isotropic growth on the graph which encapsulates the (as-
sumed) underlying geometry of the feature space. In this paper,
we provide a new affinity measured based on a similar graph dif-
fusion idea. This framework naturally embodies a geometric point
of view and is resistant to bottlenecks, noise, and non-convex/non-
Euclidean structures. The method proposed is based on growing
dual rooted minimum spanning trees (MST) between all pairs of
points and using the hitting time of the two MST’s to measure
affinity between data points.



2. FROM DUAL ROOTED GRAPHS TO SIMILARITY
MEASURES

Recent work by Coifman and Lafon [4] has provided a connection
between diffusion processes on manifolds and random walks on fi-
nite data sets. Accordingly, a random walk on a finite data set can
be seen as a discretization of a diffusion process, that will generate
paths between data points with transition probabilities determined
by local inter-point distances. By collecting all paths between any
two points, one can naturally define a diffusion measure that ac-
counts for the geometry of the data set: the more paths that connect
two points the more similar they will be.

Motivated by this interpretation, we introduced a new similar-
ity measure between data points based on the dual problem: start-
ing two random walks on different points, when will the two paths
generated hit each other? The following algorithm formalizes this
idea. Let Xn = {x1, . . . , xn} be a set of n points in R

d.

1. For each x ∈ Xn compute a rooted greedy MST. This
graph is obtained recursively in the following way. Let
MSTk(x,Xn) be the set of points in the tree at time k.
Start with MSTk(x,Xn) = {x}. Then, at time k, add the
point y in Xn not previously added that is the closest (in
Euclidean distance) to MSTk(x,Xn), i.e.,

y = arg min
z∈Xn\MSTk(x,Xn)

d(z, MSTk(x,Xn)) .

2. Define the hitting time, τ(x, y), between points x and y in
Xn as the iteration k when the two greedy MST’s rooted on
each point will intersect, i.e.,

τ(x, y) = min{k : MSTk(x,Xn)∩MSTk(y,Xn) 6= ∅} .
(2)

3. The similarity/affinity between x and y is then determined
according to the heat kernel (1) with d(xi, xj) = τ(xi, xj).

Fig. 1 shows an example of a dual rooted tree obtained by running
the above procedure in a two dimensional data set comprised of
two clusters. Alternatively, one could also use the total length of
the rooted trees at the hitting time to compute similarity between
points. This measure has the appeal of accounting for the path
lengths, as opposed to only counting the minimum number of steps
to get from one point to the other.

Regarding implementation of the algorithm, n full greedy MST’s
are grown and associated with a list containing the time stamps of
when each data point is added to the each tree. To determine the
hitting point, the ordered list of time stamps is parsed until a com-
mon point is found between trees.

3. APPLICATION TO SPECTRAL CLUSTERING

Although many flavors of spectral clustering have been proposed,
they all share the same the algorithmic structure:

1. For a given affinity matrix A, define the diagonal matrix
D = diag(A1) and the graph Laplacian as L = D − A.

2. Solve the generalized eigenvalue problem

Lv = λDv .

3. Use the eigenvectors associated with the k smallest posi-
tive eigenvalues to determine a k-way partitioning of the
data. This will depend on the particular spectral clustering
method chosen. It can range from heuristic based methods
to applying k-means on the resulting eigenvectors [1, 3].

Fig. 1. Example of dual rooted MST. The ‘×’s’ mark the two root
vertices.

Table 1. Jaccard index for clustering of data sets from the UCI
repository of machine learning [6].

Data NJW NJW Ncut Ncut
set +hit. time +Euclid. +hit. time +Euclid.

Wine .4047 .4079 .4047 .4039
Wis. Cancer .4131 .4231 .4131 .4397

Soybean .493 .493 .493 .493
Housing .5508 .5434 .5508 .5508

Ionosphere .4674 .4261 .4674 .4289

3.1. Experimental Results

To test the algorithm, we implemented the proposed affinity mea-
sure with spectral algorithms introduced in [3] (NJW) and [2] (NCut).

To measure the efficiency of the clustering, we use a quantita-
tive accuracy measure in addition to visual judgment. For this we
use a measure known as the Jaccard index [5] between a predeter-
mined set of class labels C and a clustering result K:

J(C, K) =
a

a + b + c
(3)

where a is the number of pairs with the same class label in C and
the same cluster label in K, b is the number of pairs with the same
label in C and a different label in K, and c is the number of pairs
with the same cluster in K and different label in C.

Figures 2 and 3 show the results of applying the proposed
method to some standard synthetic data sets. For comparison, we
also applied k-means and spectral methods with an affinity matrix
derived from Euclidean distances to the same data. From the fig-
ure, it is clear that k-means does not handle non-convex regions
well. Also note that the spectral methods perform more accurately
with the proposed dual rooted diffusion affinity matrix.

To illustrate the effectiveness of the proposed affinity measure
in capturing the intrinsic geometry of manifold data, we applied
the same algorithms to the “2 moons” data set embedded in a 3-
dimensional space. As it can be seen from Fig. 4, the hitting time
based affinity measure is clearly superior to the other methods.

Along with the synthetic 2− and 3−D datasets shown in fig-
ures 2, 3 and 4, the proposed method was also applied to standard
real data sets of high dimension taken from the UCI repository of



Fig. 2. Cluster results of “2 moons” data set. Cluster labels indicated by symbols. Left: NJW using hitting time affinity; Middle: NJW

using Euclidean affinity; Right: k-means algorithm.

Fig. 3. Cluster results of “2 circles with center” data set. Cluster labels indicated by symbols. Left: NCut using hitting time affinity;

Middle: NCut using Euclidean affinity; Right: k-means algorithm.

machine learning [6]. Table 1 shows the results of these experi-
ments.

While for spectral methods based on Euclidean distances, the
clustering solution is highly sensitive to the kernel width parameter
σ, we have observed that the proposed affinity matrix yields solu-
tions somewhat insensitive to this parameter. Given that τ(x, y)
is the number of steps in growing two rooted trees until they inter-
sect, this implies that τ(x, y) ∈ {1, . . . , dn/2e}. In practice, the
parameter is typically chosen to be 10− 50% of this range. Fig. 5
shows this behavior.

4. APPLICATION TO SEMI-SUPERVISED LEARNING

Building on the recent work of Belkin et al [7], we can apply
our similarity measure to the realm of semi-supervised learning.
This type of feedback-based learning seems to be a more natural
way of perform clustering, when extra label information is avail-
able. In [7], the intrinsic geometry of the feature space is factored
into the formulation of functional learning through the use of the
graph Laplacian in the extended optimization problem. Given l
data points {xi} with labels yi ∈ {−1, 1} and u unlabeled exam-
ples, let

f∗ = arg min
f∈HK

1

l

l∑

i=1

V (xi, yi, f) + γa‖f‖
2
K +

γI

u + l
fT

L f ,

where HK is a reproducing kernel Hilbert space, V is a cost func-
tion used to to fit the labeled data, and ‖ · ‖K is the norm with
respect to a kernel K. The application of the proposed affinity mea-
sure is apparent here: one can substitute our affinity matrix for the
standard Euclidean based affinity in the computation of the graph
Laplacian.

4.1. Experimental Results

We used the semi-supervised learning algorithms proposed in [7],
namely regularized least squares (LapRLS) and support vector ma-
chines (LapSVM) with intrinsic geometric penalty via the graph
Laplacian. For LapRLS, the cost function is V (x, y, f) = (y −
f(x)), while for LapSVM the cost function is given by the hinge
loss V (x, y, f) = (1 − y f(x))+.

The effectiveness of the obtained labeling is measured accord-
ing to the accuracy measure described in [8]. Given a set of true
class labels C, the accuracy of a classification output C̄ is defined
as:

accuracy =
∑

i>j

I{I{Ci = Cj} = I{C̄i = C̄j}}

u(u − 1)/2
, (4)

where I{·} is the indicator function.
Table 2 shows the results of applying the described methods to

data sets with 10 to 20 labeled examples. As the choice of labeled
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Fig. 4. Cluster results of “2 moons” embedded in 3-D. Cluster labels indicated by symbols. Left: NCut using hitting time affinity; Middle:

NCut using Euclidean affinity; Right: k-means algorithm.

Fig. 5. Plot of variation in clustering effectiveness (Jaccard index)
vs. change in heat kernel parameter σ. Experiment performed
on Wine data set [6] using NCut method with both hitting time
and Euclidean based affinities. Parameter chosen to be % of the
maximum distance of data set.

examples can greatly affect the output, to avoid possible bias many
simulations were run, with the labeled points chosen randomly for
each experiment, but kept the same for different algorithms. The
optimization parameters γA and γI were set by cross validating
the accuracy measure. Typically, the best results were obtained
when γA → γI or when the ambient space regularization was
emphasized at least as much as the geometric regularization. As
it can be observed, the use of the proposed hitting time affinity
always outperforms the Euclidean based affinity. For some data
sets, it even greatly improves the labeling accuracy.

5. CONCLUSION

We have introduced a new measure of dissimilarity between data
points based on dual rooted diffusions. This results in a quantity
that captures both local structure of the data set, through neighbor-
hood relations, and global structure, through the complexity of the
possible paths connecting any pair of points in the data set.

A natural extension of the ideas presented here is forming the
affinity matrix using dual rooted graphs based on geodesic dis-

Table 2. Accuracy of semi-supervised classification of data sets
from the UCI repository of machine learning [6].

Data LapRLS LapRLS LapSVM LapSVM
set +hit. time +Euclid. +hit. time +Euclid.

Wis. Cancer .5463 .5463 .4071 .4032
Housing .8967 .8108 .7641 .7316

Ionosphere .5481 .5461 .6278 .5584

tances instead of Euclidean distances. This will allow one ex-
tra step in accounting for the intrinsic geometry of the data. We
are also studying variations of the diffusion paradigm using single
rooted trees. Of great importance to all this work is the theoretical
characterization of the behavior of the proposed graphs.
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