DYNAMIC VOLTAGE SCALING ALGORITHMS FOR POWER CONSTRAINED
MOTION ESTIMATION

In Suk Chong and Antonio Ortega

Signal and Image Processing Institute, University of Southern California, Los Angeles CA 90089

ABSTRACT specific decision; both performance criteria and acceptability thresh-

In this paper, we apply dynamic voltage scaling (DVS) to the matchplds are highly dependent on the application. In [5], we studied

ing metric computation (MMC) used within motion estimation (ME) wi?hlirr??r?gtn?cf)t?c?r:destrirrggstigr? (T/I?Et;:hlpc?cgest?r? ;%?;Félétig?: (rlt\a/lsl\gico )n
in typical video encoders. Our approach is based on “soft DSP” con- ) P . P
system. In this case, we showed that both video encoder and de-

cepts. We analyze the effect of ME errors (due to DVS) in over- oder remain operational, and thus these errors can be evaluated in
all coding performance. We propose a model for the resulting ratf P ’

increase (at a given fixed quantization parameter) as a function ?:)Tes bci)tfstg?ecr?(r;%rsjstlggo%ifgggagfi pﬁlr;ltyutgﬁty Fer\c/)glu;se ég?ﬁ'_
input characteristics and input voltage, for given ME algorithm and" : . 9 q Y .

MMC architecture. This model is validated using simulations. Wepared to the b!t-rate required by a fault-free system operating at th?
then compare ME algorithms and MMC architectures, and proposgame QP). This performance penalty may be acceptable for specific

a method for power saving of the ME process that depend on inp pplication scenarios. We have also provided a primasifyerimen-

characteristics and desired coding performance. As an iIIustratioerLg;’,,aézﬁgﬁinog;t:e ?eiza\gg][tOSssgvfralrxshaég?gtm?mﬁ; :Aoét
of the potential benefits of allowing computation errors, we showprocess 3] pplyIng PP
h llowing errors that | mall r incr e .
that allowing errors that lead to a small rate increase (aBoi)t In this paper, we extend our previous work [3] to a DVS sce-

produces37% power savings in the ME process, as compared to__ . Th . it f ; del for d dati
not using DVS. An essentially “error-free” DVS approach (no ratenaro: e main novelty comes from i) a model for degradation

. . in video coding performance due to voltage scaling, as a function
enalty) can achieve around% power savings. h o . ) ’
P Y) %p g of input characteristics and for given ME algorithms and MMC ar-

Index Terms— Dynamic voltage scaling (DVS), error tolerance chitectures (this model can used to select input voltage values for

(ET), Soft DSP, matching metric Computation (MMC) target coding performance criteria), and ii) using this model to com-
pare various ME algorithms and MMC architectures in terms of their
1. INTRODUCTION coding performance under DVS. Our proposed models for DVS per-

formance are designed to be used in hardware-based video encoders,

Power (or energy) is the most important design constraint in manjut could also prove useful in the context of general purpose proces-
VLSI design scenarios [11]. Many approaches have been propos&@rs for which power control is enabled (see [8] for an example).
for power constrained VLSI, ranging from circuit level to architec- Since ME is performed at the encoder, our work is primarily applica-
tural and algorithmic level [7, 9]. Dynamic voltage scaling (DVS) ble to scenarios where power-constrained devices (e.g., cellphones)
is an attractive technique to reduce power consumption, as loweringie used for video capture and encoding.
input voltage by a factod, reduces energy dissipation by almost a To introduce our model, we first briefly explain the ME process,
factor J? [9]. Soft DSP is an efficient approach for DVS [9] that introduce different MMC architectures we will use, and describe the
has been applied to low level systems, such as adders and multipligrasic setting for analysis (Section 2). Each MMC architecture in-
accumulators (MACs) often used in signal processing applicationgolves several “soft” adders, such as those used in the soft DSP con-
(e.g., linear filters and multi-input-multi-output, MIMO, systems). text. We provide a detailed analysis of errors due to voltage scaling
In soft DSP systems the input voltage is below critical voltage (i.e.for a single adder (Section 3). Then we extend it to model errors
we have voltage over scaling, VOS), which leads to input-dependerif typical MMC architectures and the performance degradation due
soft errors. Then, soft-error tolerance is achieved by using explicito soft error as a function of input voltage and input characteris-
error control blocks that provide error concealment so as to operatécs. This model is validated using simulations (Section 4). Using
with negligible loss in algorithm performance. this model, we propose a voltage control method, which based on

In our previous work, we have shown that image/video compreseur simulations can achieve abait% power savings in the ME
sion systems exhibit error tolerance (ET) characteriséusn if no  process, as compared to not applying any voltage scaling, with very
explicit error control block is addedand this under both hard errors slight increase in rate (arourdd).
(due to deterministic faults) [6, 5] and soft errors (due to DVS) [3].
Errors due to VOS in these applicat_ion_s are either i) concealed by 2 MOTION ESTIMATION WITH SOFT ERROR
other parts of the system (e.g., quantization can conceal errors affect-
ing a transform computation) or ii) are “acceptable” [2]. Determin-The ME process comprises a search strategy of the motion vector
ing what constitutes acceptable errors is obviously an appllcatlon(ME algorithm) and a matching metric computation (MMC). The

This paper is based upon work supported in part by the National Scienc%eamh strategy deCIde.s a set pf candidate M.VS and then proceeds
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sions or recommendations expressed in this paper are those of the auth@e that minimizes the matching metric (typically, sum of absolute
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SAD is used). model is as follows:

There are several types of hardware architectures [12] to com- MAD MAD
pute the matching metrics, with different levels of parallelism. We R=25 QP + 52 QP2 @)
will refer to them as MMC architectures. Among those, we choose a . ) o .
serial and parallel architecture for analysis (see Figure 1). The seriffhereRz is the rate M AD is the energy of the prediction residual
architecture ha/? serially connected adders for SAD computation Measured in terms of mean absolute difference (MADJ; is the
between twal/ x M macroblocks. It is simple but requires longer duantization parameter arf, 5> are parameters to be estimated.
running time compared to the parallel one. As shown in Figure 1, th&Ne can see that the Q2 Model can be rewritten as a linear function
parallel architecture ha&f parallel groups of “leaf” adders ant/ of SAD for aflxedQP. Now we take derlvatlve of both terms. Then
“central” adders (in total/2 + M adders are needed). Each group_the following relation holds for & AD increase Esap) and rate
of leaf adders consists i adders and computes the sum\gfAD ~ INCrease {R):
values. Then, the central adders compute the final SAD adding up AR = X1Esap &)
M partial SAD values. In leaf adders, outputs are small compared/here X is a parameter to be estimated for each set of frames (i.e.,
to the final SAD value (on average partial SAD values in a set oibne GOP or whole sequence). Therefore if we know the model for
leaf adders will be smaller thaﬁﬁTD). Thus errors with magnitude FEgsap, we know the model fo R. Now we focus on modelling
larger than% (small compared to the finsd AD) are unlikely  Esap as a function of’dd and input characteristics. For this pur-
to be generated in the leaf adders, because soft errors in an addse, in the next section we study the characteristics of soft errors in
cannot be greater than the output of the adder (see Section 2.1.2)e MMC processk;).
Thus we only need to focus on the central adders in parallel MMC
architecture case, as this is where the larger errors are likely to hap-1. The MMC process with Soft Errors

pen. These central adders can be modelletf arial adders whose ) . )
inputs are the sum a¥/ AD values. An MMC system includes severatbit adders. We assume that rip-

ple carry adders with voltage scaling are used, as they provide useful
functionality for DVS [9]. We assume that all soft adders in the
el MMC process have the same input volta§&i(l), as is typically as-
sumed in soft DSP techniques [9]. When we decrdégé for the
adders, the circuit delay for one full addér«4) increases, but the
sampling time Ts) remains the same. ThuB,s, the number of full
v adder (FA) operations possible in offie, will decrease. From now
on, we will useRs instead ofl’dd as the parameter that controls the
operating point of the systen®s is a function ofV’dd and depends
on several gate parameters (see [9]). Here we will use the parame-
ters used in [9]. If the number of FA operations required to complete
one addition (i.e., the path delay divided by 4, which is obviously
Genual input dependent) is larger thaRys, then an error is generated. Our
target is to model errordy;) due to applyind/dd < Vdd.,:: to the

Fig. 1. MMC Architectures. Left: Serial Architecture, Right: Paral- MMC ha_fdware- As afir_st step, we need o un_derstand . b_ehavior
lel Architecture ' of ann-bit soft adder ¢-bit ripple carry adder with voltage scaling).

For each macroblock of siz& x M in the current frame, the 2.1.1. n-bit Soft Adder
MMC process computes the matching metric for each candidate block
in the reference frame’s search window; these are den®t#d,

SADs,,...,SADy (sorted in magnitude § AD;, with SAD; the N N N S ,%f NN
largest one) wheréV is number of candidates. We defidéV,,,in AT 6 0 1T 1] A 0/ o 6 1T 1T 1]
as the best MV, which corresponds to the index such $haD; is B o 1 1 0 1] B] o/ T 1 0 1 0]
minimum (hereM V,,,;, = N), andSAD,,;, as a minimum SAD ST o o o 0] S| ,1/ o0 0 0 1]
among allSAD; (hereSAD.,in, = SADN).

When the MMC process operates witlid below its normal op- SheSad 0o LIS 28 ST /0 100 0 0 1
erating range (i.e., lower thafdd....), the aboves AD; values may K zeros Bro2 ReiTe

be corrupted; those possibly erroneatid D; values are denoted

SAD1,SAD; ,...,SADYy, whereSAD] = SAD; — E;, with  Fig. 2. Upper left: input with path delay equal 634, Lower left:

E; denoting the soft error due to voltage control. Denbfé’y the  outputS with path delay equal t6K 4 1)Tx 4, Right: soft error due
MV chosen wherS AD; are used. MV} # MV,,in, the residual  to Vdd control

block’s distortion (as measured by the SAD) increase&byp =

SADnv; —SADmin. Thisincrease in distortion{s 4 p) may lead An n-bit ripple carry adder comprisesserially connected full
to rate increases for a given QP, which we propose to model using tredders. Denote its input$ = [an...a1] and B = [b,...b1], and let
quadratic (Q2) model [4]. This model has been applied inimplemen$S = A + B = [s,...s1], with the carry denoted b§' = [c,...c1].
tations of existing video encoding standards ITU-T H.264/MPEG4Each FA has inputs;, b;, c;—1 and outputss;, ¢;, and each input
AVC [1] and tends to be accurate for large data sets, such as orgir (a;, b;) is introduced to corresponding FA simultaneously. If a
Group of Pictures (GOP) or one whole sequence (its accuracy ircarryc; is generated in each FA, it is propagated to the next FA (see
creases with the number of frames being modelled). The main QEigure 2).



If Vdd < Vdd.+ an error can be generatedAfs is smaller (P(i = MVy)), instead of the correct vector. When this happens
than the path delay required for the computation. The to&h  theSAD of the prediction residual increases 84 D; — SAD pin -
delayis determined by théongest consecutive carry propagations But only SAD; > 275 can result in a error and thus lead to an
Consecutive carry propagations are generated after an initial cargrroneous MV choice. Thus we defidg as the set oSAD; for
generation (by aiil, 1) input pair) is followed by carry propagation which errors can occur so thais selected a3/ V; (Q = {i|2%s <
inputs (1, 0) or (0, 1) input pairs). Thus if an input has a path delay SAD;}, Ng = |Q]). ThenEs4p can be written as follows:
larger thanRs, carry input to thg Rs + k)-th FA is lost ( is the

starting position of carry propagation) and an error with magnitude Esap = Z(SAD@- — SADpin)P(i = MVy), )
2Rs+k is generated (see Figure 2). i€Q

Itis interesting to note that for the path delay to/&e-1 for one ) . )
addition, the result, has to include a followed by K consecutive To estimatefs 4 p according to (5), we evaluate(i = MVy)

0s (from the(k + 1) — th bit to the (k + K) — th bit), i.e., S = firsF. Fori = MVy, SAD; needs to be smaller than all oth&d Dy,
m2K+* 1 R wherem > 0andR < 2. Thus ifi)S = m25X* 4+ R which can be stated as follows:

whereK > Rg, and ii)ar+1 = 1 (automaticallybx+1 = 1), then . . / '

an error with magnitude”s+* is generated. Here we can see that Pli=MVy) = H P(SADy > SAD:) ©
errors can be no greater tharand that an error cannot be generated v
if S < 2fs. Sinceax,1 corresponds to a lower significance bit (as This equation is based on the observation that each efrg) (
compared taS), we can assume that anday1 are independent. is almost independent of corresponding SAD val§elD.,) (see
And if we assume i)P(S = m2"s** 4 R)is similar for all R (S Section 2.1.2). Foi to be chosen as the/V;, SAD! should be the
has smooth distribution), and ii) thatar+1 = 1) = % we can  minimum among allSAD),, so thatSAD, < SAD,,., and thus
model the error in a soft adder as: the following holds:

T
Plerror =2%5) = 37 (5 = mas 2L (3

m=1

SADpin

P(i=MVy) = / P(SAD; = x) [[ P(SAD., > z)dx

0 wH#
whereT” = [2’225%1 andn is the width of the adder. Here we can derive a simple expressionfSAD,, < (7))

. Wi iv i X i x
2.1.2. Soft Error in the MMC process v

! B which is a linear function of, assuming tha}" Ppsap, (PSAD, =
If at least one of the intermediate soft adders satisfies the conditiongerk) (probability that the value of one of the intermediate out-

for error generation, an error occurs. This condition dependBon  puts (PSAD;) is m2s**) is independent of and takes a constant
and on the outputs of intermediate adders, each of which is a partighluep,.

SAD of thel — th node (PS AD;). Thus we can model the errd,, P(SAD), < z) ~ T 20 ®)
givenSAD,;, if we know characteristics dPSAD;. In [10], given a v 2Rs+1
final SAD (SAD:;) , characteristics df—th partial MAD (PM AD;) Thus applying (8) to (7), we obtain:

are modelled as random variables with mégi:. SincePSAD, )
is a multiple ofPM AD;, a model forPSAD, can be easily derived Pli=MVi)~ —(1—(1-~
for a given final SAD. We can then derive a model 1oy, this will Ng

be the probability of error for the single-adder case summed over all
intermediate nodes, i.e.,

T
P(E; =2k = 37
m=1

SADmin

S R E ©)

2
Generallypy will depend on the MMC architecture. In a serial
architecture there ar®/? intermediate nodes to consider, while we
only need to conside¥/ nodes in a parallel architecture (the central
nodes, as discussed in Section 2.1.2). If the number of intermediate
4) nodes is larger for the same final SAD, there are more chances for
; ; Rg+k _

Here we assume that an error occurs on only one intermediaf@® of the |r_1termed|ate n(_)des tom °"". Thusp, correspond

ing to a serial MMC architecture is larger than for a parallel one.

node so thaf; = 2% L = 0,1, .... From our simulations, we ]
observed that the probability that errors occur in more than one nod-ghesefj0 V?'“es can be precalculated for givemD., Rs, and_
MC architectures. Now we apply (9) to (5) to get the following

tends to be negligible. We make use of this single-error assumptio )
as it simplifies the modelling and the experimental results validate it€XPression fofsap:

Any givenS AD; value can be produced by many different com- SAD,in
binations of intermediate node output8{AD;). Thus, sinceF; Esap = (SADq = SADmin)(1 = (1 = v——5 =
depends on those intermediate computations, diffefEgntan be
generated for a giveA AD; value. We modeFE; as a random vari- whereSADg isamearS AD value over sef), andAR = X1 Esap.
able which is independent FAD; if SAD; > 28s (if SAD; <
2’_25 thenE; = 0), but cannot take_ arbitr_ary values. In particulal_r we 4. SIMULATION AND DISCUSSION
will have thatE; < SAD;; our simulation shows that correlation

betweenSAD; andE; is very small € 0.03). To evaluate our proposed model, the Foreman and Stefan sequences

were tested. We simulated the effect of a serieB g¥alues using an
3. CODING PERFORMANCE MODELS H.264/AVC baseline profile encoder with full search/EPZS ME al-

gorithms and serial/parallel MMC architectures. Ohfiyx 16 block

With our proposed model foE; we can now derive an analytical partitions and a single reference were considered for 1B; was

model for Esap (the expected value of the increase in predictionfixed and rate distortion optimization was turned on. We assign 15

residualSAD) as a function ofSAD; and Rs. For eachSAD; frames to each group of pictures (GOP), and use an IPPP GOP struc-

there is a possibility that due to an errowill be chosen as the MV ture. We collect real rate increas R) data by encoding each GOP

L
Z Ppsap, (PSAD; = m2fstkyok—1
.

)¥e) (10)



with/without errors (forRs = 5,7, ...15 andVdd..;+ correspond-
ing to Rs = 16). We estimate\ R with Es4p computation and(;
estimation for each GOPs4p is computed by collecting AD;
statistics during the normal encoding operation without errors, and[5]
X is estimated by evaluating the ratio of realR and computed
Esap for one specificRs point with nonzeroEsap (R%). Fig-

ure 3 shows the variations &R as a function ofl’dd, which will

be useful to design a power control mechanism. This result showd6]
that we can precisely estimateR with our analytical model in the

Rs range of interest.

Using simulation result and model, we can compare MMC ar- [7]
chitectures and ME algorithms. The slopeR for serial MMC ar-
chitecture is larger than one of a parallel architecture, begausea
serial MMC architecture is larger (see Section 3). But the saturated
AR value is similar because it only depends®AD,in, SADg,
which is the same for both cases. Since a EPZS search strategy uses
a good prediction algorithm to select a small number of MV candi-
dates, which are already near the minimum SAD point, EPZS has[g]
smaller Ng, SADg than the full search algorithm. ThusR of
EPZS is always smaller than that for the full search case. In su 10]
mary, EPZS search algorithm and parallel MMC architecture ar
better than full search algorithm and serial MMC architecture re-
spectively. Note that we do not consider the inherent difference i
complexity, regularity, and memory usage between EPZS and FS ai-
gorithm; FS algorithm has more searching points but has more re%-
ular structure and memory usage than EPZS. 12]

If we can estimaté\ R as a function ofRs for a given sequence
before encoding, we can contrbldd in a optimal fashion during
the encoding process, thus saving power. A normal video encoder
optimization scheme only considers rate and distortion. But in en-
coding scenarios that require small power consumption, e.g., hand
held devices, we need to take power consumption into considera-
tion by adding this to the cost function. To estimaé? data, we
need information about AD; (SAD value for each MV candidate
in one macroblock). Since information aba$%id D; is not avail-
able before encoding, it can be estimated, for example, by encod-
ing without DVS a single frame within a GOP. This approach will
be effective if Esap and X; do not change much in within one
GOP. Selecting an optim& dd point can be done using various op-
timization techniques, such as those based on lagrange multipliers
A heuristic method would be to choose a threshold for rate change
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(AR:1), and selecV dd such that estimated R is less thamA R,

Using these algorithms, we can charigéd dynamically depending Fi9- 3. Rate change due to DVS in ratio compared to original rate
on input characteristic with a slight additional complexity in the en-(dot: _estimated data using our model, solid: real data); using a

coding system, but with potentially large power savings. Figure
highlights the potential for savings in the ME process using DVS;
setting AR;, = 0.1, leads t037% power reduction when using
EPZS and the parallel MMC architecture. Considering that a signif-
icant percentage of power consumption is due to the ME process (a
least20% in case of MPEG2 encoder), total power savings within
the video encoding system can be significant.
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4. Power saving effect of ME process using DVS for various ME

algorithms and MMC architectures; considering redundancy due to
encoding one frame of every GOP withdd....; and RE for SAD;

information andX; estimation, FOREMAN sequence, QP=20, gate
parametersd = 2.0, Vdd.ri: = 3.3V, V: = 0.62V)



