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ABSTRACT
Estimating the positions of sensor nodes is a fundamen-

tal and crucial problem in wireless sensor networks. In

this paper, a novel subspace approach for range-based

measurements node localization is devised. Computer

simulations are included to contrast the performance of

the proposed algorithm with the conventional subspace

positioning method, namely, classical multidimensional

scaling, as well as theCramér-Rao lower bound.

Index Terms— subspace method, position estima-

tion, wireless sensor networks

I. INTRODUCTION

Recent technological advances in wireless commu-

nications and microsystem integration have enabled the

development of small, inexpensive, low-power sensor

nodes to collect surrounding data, perform small-scale

computations and communicate among their neighbors.

These wirelessly connected nodes have numerous re-

mote monitoring and control applications [1]-[3] such

as asset management, habitat monitoring, health caring,

building automation, battlefield surveillance, as well as

environment observation and forecasting. Since sensor

nodes are often arbitrarily placed with their positions

being unknown, sensor positioning is a fundamental

and crucial issue for the wireless sensor network

(WSN) operation and management.

A number of node localization methods have been

developed in the literature [4]-[11]. A straightforward

technique is to exploit the connectivity information

[4] — who is within the communication range of

whom — to derive the node positions with the use

of the anchor nodes subject to the proximity con-

straints imposed by the known connections. But it only

provides coarse-grain location estimates. Apart from

connectivity, range-based schemes which utilize node-

to-node or hop distances and/or angles can attain higher

sensor positioning accuracy. The ranges are usually ob-

tained from the pair-wise time-of-arrival (TOA), time-

difference-of-arrival, received signal strength (RSS)

and/or angle-of-arrival measurements, although it is

also possible to use the average hop length and hop

counts between indirectly connected nodes to deduce

the distance information [5] as well. Assuming that the

range measurements errors are Gaussian distributed,

the maximum likelihood (ML) methods for node lo-

calization correspond to the nonlinear least squares

problem [6]-[8]. The ML approach can attain optimum

estimation performance but requires centralized data

processing with intensive computations and sufficiently

precise initial estimates for global convergence. On the

other hand, suboptimal but computationally attractive

range-based positioning techniques such as multilater-

ation [9] and classical multidimensional scaling (MDS)

[10]-[11] can allow distributed processing. In this pa-

per, a computationally simple subspace algorithm for

WSN positioning with the use of the node-to-node

distance estimates deduced from the RSS or TOA

measurements is devised.

The rest of the paper is organized as follows. The

development of the subspace localization algorithm for

WSN is shown in Section 2. Numerical examples are

presented in Section 3 to compare the proposed algo-

rithm with the MDS method [10] as well as Cramér-

Rao lower bound (CRLB) [12]. Finally, concluding

remarks are given in Section 4.

II. SUBSPACE POSITIONING APPROACH
II-A. Full Set Solution
Consider a fully connected network of M sensors

in a two-dimensional space. (extension to the three-
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dimensional space is straightforward.) Let si = (xi, yi),
i = 1, 2, · · · ,M , be the position of the ith sensor.
Without loss of generality, we assume that the positions

of the first k of them, s1, s2, · · · , sk, where k ≥ 3, are
known. The task is to find si, i = k+1, k+2, · · · ,M .
To derive our proposed positioning approach, we first

let the distance between the ith sensor and jth sensor
be di,j , given by:

di,j = dj,i =
√

(xi − xj)2 + (yi − yj)2,
i, j = 1, 2, · · · ,M. (1)

Let mCn = m!/[n!(m − n)!], and consider a matrix
X ∈ R(MC2−kC2)×2 which contains all the differences

of xi − xj and yi − yj , i > j, with at least one of
the si and sj being unknown. Mathematically, X is

represented as

X =

⎡
⎢⎢⎢⎣

xk+11k − xk yk+11k − yk

xk+21k+1 − xk+1 yk+21k+1 − yk+1
...

...

xM1M−1 − xM−1 yM1M−1 − yM−1

⎤
⎥⎥⎥⎦ (2)

where

[
xT

i

yT
i

]
=
[
x1 x2 · · · xi
y1 y2 · · · yi

]

with 1i and (·)T denote the i × 1 vector with all

elements 1 and transpose operation, respectively. The

matrix X can be expressed a linear combination of

matrices with coefficients xi and yi, i = k + 1, k +
2, · · · ,M :

X =
2(M−k)∑

i=1

φiXi +X0 (3)

where φi is the ith element of the vector φ which is

defined as

φ =
[
xk+1 yk+1 xk+2 yk+2 · · · xM yM

]T
Here, [X0]i,j ∈ {0,−x1,−y1,−x2,−y2, · · · ,−xk,−yk},
[Xk]i,j ∈ {−1, 0, 1} and [X]i,j denotes the (i, j) entry
of X.
The subspace method to be presented is based on

examining the subspace and rank properties of the so-

called multidimensional similarity matrix [13]

D = XXT (4)

The rank of D is rankD = rankX = 2. The matrix D
is constructed from {di,j} using the following formula:

D = −0.5KRKT (5)

where

[R]i,j = d
2
i,j

K =
[
Ek+1 Ek+2 · · · EM

]T
Ei =

[
ei,1 ei,2 · · · ei,i−1

]
=
[ −Ii−1 1i−1 0(i−1)×(M−i)

]T
,

i = k + 1, k + 2, · · · ,M
and

ei,j = ei − ej

with 0i×j and ei denote respectively, the i × j zero
matrix and the ith column of IM . Since D is sym-

metric, positive semidefinite, and of rank 2, it can be

decomposed using eigenvalue factorization as

D = UsΛsUT
s +UnΛnUT

n (6)

where Λs = diag (λ1, λ2) � 0, Λn =
diag (λ3, · · · , λ

MC2−kC2) with λ3 = λ4 = · · · =
λ
MC2−kC2 = 0 and the columns of Us ∈
R(MC2−kC2)×2 and Un ∈ R(MC2−kC2)×(MC2−kC2−2) are

called the signal and noise eigenvectors, respectively.

As X lies in the signal subspace Us, we have

UT
nX = 0(MC2−kC2−2)×2 (7)

or by (3)

2(M−k)∑
i=1

φiUT
nXi = −UT

nX0. (8)

When disturbance is present, noise-free distances {di,j}
are available only for k ≥ i > j ≥ 1. In our study,
we generalize all the observed distance measurements,

denoted by ri,j , as

ri,j = rj,i = di,j + qi,j

where qi,j = qj,i is the possible zero-mean noise with
variance σ2i,j ≥ 0 if max(i, j) = k + 1, k + 2, · · · ,M ,
and σ2i,j = 0 otherwise with max(i, j) = i if i ≥ j.
This means that for practical purposes, {ri,j} will

be substituted for {di,j} in (5) when the latter is

unavailable in forming D. As a result, the equal signs
in (7) and (8) should be replaced by the approximate
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equal signs and λ3 ≥ λ4 ≥ · · · ≥ λ
MC2−kC2 ≥ 0.

Taking vectorization on both sides of (8) yields

Aφ ≈ b (9)

where

A =
[
vec

(
UT

nX1

) · · · vec
(
UT

nX2(M−k)

) ]
(10)

and

b = −vec (UT
nX0

)
(11)

with vec(·) being the vectorization operator. A simple
and straightforward estimate of φ, denoted by φ̂, is
obtained by least squares (LS):

φ̂ = A†b (12)

whereA† =
(
ATA

)−1 AT is the pseudo-inverse ofA.
We refer this subspace based estimate to as the full-set

solution because all admissible pairs in {si} have been
employed.

II-B. Minimal Set Solution
In fact, the computational complexity of our pro-

posed approach can be significantly reduced by con-

sidering the rank deficiency of D as follows. From (5),

it can be shown that

Ei+1

[
Ii−1 −1i−1

]T = Ei, i = k + 1, · · · ,M − 1

⇒ span (Ek+1) ⊂ span (Ek+2) ⊂ · · · ⊂ span (EM )

⇒ rankK = rankEM =M − 1

where span(A) is the space spanned by the columns of
A. Therefore, the dimension of D can be significantly

reduced to (M − 1). For example, we can choose

D̆ = X̆X̆T

= −0.5ET
M−1REM−1 (13)

where

X̆ =
[
xM − x1 xM − x2 · · · xM − xM−1

yM − y1 yM − y2 · · · yM − yM−1

]T

or any (M − 1) rows of K such that rankD̆ =M − 1.
It should be noted that the choice of D̆ is not unique

because different rows of K can be selected as long as

the rank requirement is satisfied. Moreover, different

choices may give different estimation accuracy. The

position estimate of this simpler scheme follows the

same procedure of (6)-(12) and we refer it to as the

minimum set solution.

III. NUMERICAL EXAMPLES
Computer simulation has been conducted to com-

pare the mean square position errors (MSPEs) of the

subspace algorithm with the classical MDS method

[10] as well as CRLB [12] for WSN localization.

The additive noise qi,j is a zero-mean white Gaussian
process. The signal-to-noise ratio (SNR) of all range

measurements is set to be identical and it is defined

as SNR = d2i,j/σ
2
i,j . A WSN of 14 fully-connected

sensors is considered with 10 of them begin unknown.

The 14 sensors are located in a 100 × 200 m2 area

and we position the anchor sensors at (0,0)m, (0,100)m

(100,0)m and (100,100)m. All simulation results are

averages of 1000 independent runs.
In the first scenario, the 10 unknown sensors have

fixed positions and the WSN geometry is shown in

Figure 1. The average of the MSPEs for the 10

unknown sensors is plotted in Figure 2 to illustrate

the overall performance. It can be observed that both

the full set and minimum set subspace solutions have

smaller MSPEs than those of the MDS method, though

they are inferior to the CRLB by about 8 dBm2 and

11 dBm2, respectively, in the whole SNR range.
In the second scenario, the positions of the 10

unknown sensors are located randomly according to

a uniform distribution in the 100 × 200 m2 area

while the anchor positions remain unchanged in each

independent run. Comparing with the first test, both

the proposed subspace methods and MDS have larger

MSPEs but the former is still superior to the latter by

around 3.5 dBm2 and 1 dBm2, respectively. The results

indicate that the proposed subspace approach outper-

forms the MDS solution for various sensor geometries

in an average sense.

IV. CONCLUSION
Two novel subspace based solutions have been de-

vised for node localization in fully-connected wireless

sensor networks (WSNs) using distance measurements.

Although the proposed positioning approach gives

suboptimum estimation performance, it is superior to

the classical multidimensional scaling scheme. Future

research will be focused on modifying the proposed

methodology so that it can be operated in a distributed

manner and/or partially-connected WSNs.
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Fig. 1. Positions of the sensors
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Fig. 2. Mean square position error versus SNR with

fixed-position sensors
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Fig. 3. Mean square position error versus SNR with

random-position sensors
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