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ABSTRACT
In multi-antenna communication systems, channel in-

formation is often not known at the receiver. To fully ex-

ploit bandwidth resources of the system and ensure practi-

cal feasibility of the receiver, channel parameters are often

estimated blindly and then employed in the design of signal

detection algorithms. Instead of separating channel estima-

tion from signal detection, in this paperwe focus on the joint

channel estimation and signal detection problem in a single-

input multiple-output (SIMO) system. It is well known that

finding solution to this optimization requires solving an in-

teger maximization of a quadratic form and is, in general,

an NP hard problem. To solve it, we propose an approx-

imate algorithm based on the semi-definite program (SDP)

relaxation. We derive a bound on the pairwise probability of

error (PEP) of the proposed algorithm and show that, the al-

gorithm achieves the same diversity as the exact maximum-

likelihood (ML) decoder. The computed PEP implies that,

over a wide range of system parameters, the proposed algo-

rithm requires moderate increase in the signal-to-noise ratio

(SNR) in order to achieve performance comparable to that

of the ML decoder but with often significantly lower com-

plexity.

Index Terms— Probability,Signal detection,Estimation,
Noise,Communication systems

1. INTRODUCTION

Multi-antenna wireless communication systems are capable

of providing reliable data transmission at very high rates.

The channel in those systems is, in principle, unknown to

the receiver and needs to be estimated either prior to or con-

currently with the detection of the transmitted signal. One

way of obtaining the channel parameters is by sending a

training sequence known to both the transmitter and the re-

ceiver. Alternatively, to save the bandwidth, one may resort

to blind estimation techniques which, in general, learn the

channel by exploiting the known properties of the transmit-

ted symbols. In this paper, we study the latter and focus on
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the joint channel estimation and signal detection in systems
that have single transmit and multiple receive antennas, a

frequent cellular systems uplink scenario.

We assume a standard flat-fading channelmodel formulti-

antenna systems,

X =

√
ρT

M
sh + W (1)

where T denotes the number of time intervals during which
the channel remains constant,M = 1 is the number of the
transmitted antennas, N is the number of the received an-
tennas, ρ is the signal-to-noise ratio (SNR), X is a T × N
matrix of the received symbols, s is a T×1 transmitted sym-
bol vector comprised of components si for which it holds

that |si|2 = 1
T , h is an 1×N channel matrix whose compo-

nents are independent, identically distributed (i.i.d.) zero-

mean, unit-variance complex Gaussian random variables,

and W is an N × T noise matrix whose components are
i.i.d. zero-mean, unit-variance complex Gaussian random

variables. Furthermore, we assume that the components of

h andW are uncorrelated and that T ≥ N , which is often
the case in practice.

In the next section, we review the joint channel estima-

tion and signal detection problem and propose an efficient

algorithm for finding its approximate solution.

2. JOINT CHANNEL ESTIMATION AND SIGNAL
DETECTION

The optimal, joint maximum-likelihood (ML) channel esti-

mator and signal decoder of the system (1) solves the opti-

mization

min
s∈{− 1√

T
, 1√

T
}T ,h

‖X −
√

ρT sh‖2. (2)

It is easy to see (e.g., [5]) that the optimal h can be found as

ĥ =
1√
ρT

s
∗X.

Substituting this value of ĥ in (2), we can write
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min
s∈S

‖X −
√

ρT sh‖2 = min
s∈S

‖X − ss
∗X‖2

= min
s∈S

{−Tr (s∗XX∗
s)} = max

s∈S
Tr (X∗

s(X∗
s)∗),

where we denoted S = {− 1√
T

, 1√
T
}T . Therefore, the inte-

ger optimization problem one needs to solve can be written

as

max
s∈S
Tr (XX∗

ss
∗) (3)

Optimization (3) is a very difficult problem. In [5], the

sphere decoder algorithm is employed to solve (3) exactly
which, for some parameters, may be computationally costly.

In this paper, we focus on finding a computationally effi-

cient approximate solution to (3). In particular, we relax (3)

and instead solve

max
Q≥0,Qii=1

Tr (XX∗Q). (4)

(This is a well-known semi-definite programming (SDP) re-

laxation, often used for obtaining approximate solutions to

difficult combinatorial problems. Interesting reader can find

more on that in [1] and its applications in communications

in excellent references [6],[7]). Let Q̂ and sML denote the
solutions to (4) and (3), respectively. It can be shown (see

[2]) that

αTr(XX∗Q̂) ≤ Tr(XX∗
sMLs

∗
ML), (5)

where α = 2
π . Furthermore, for ŝ = sgn(Lr), where L

is any matrix such that LL∗ = Q̂ and r is a vector with

Gaussian i.i.d. components, one can write

αTr (XX∗
sMLs

∗
ML) ≤ E|rTr(XX∗

ŝŝ
∗). (6)

Therefore, one can construct a suboptimal solution to (3)

which has a guaranteed performance. Of course, strictly

speaking, the performance is guaranteed only in the expected

sense. However, if we repeat the randomized procedure suf-

ficiently many times, we are very likely to obtain an instance

with a cost whose value is greater than the true expectation.

In fact, it was shown in [3] that, with certain modifications,

the expectation in (6) can indeed be omitted.

Hence, there is a polynomial time algorithm which pro-

vides a suboptimal solution to (3), ŝ, such that

αTr (XX∗
sMLs

∗
ML) ≤ Tr (XX∗

ŝŝ
∗). (7)

Now, in order to provide sound proofs in the following

section we will slightly modify the SDP relaxation. Let s̄ be

the solution of the following optimization problem

s̄ = arg max
s,(s∗ŝ)2≥αTrXX∗

ss
∗ (8)

We refer later in the paper to this way (based on a slight

modification of the standard SDP-relaxation randomized al-

gorithm) of generating a solution s̄ as Algorithm 1.

3. COMPUTING PEP

The probability of error can be written as

Pe =

2T∑
i=1

P (error|stis sent)P (stis sent). (9)

In the remainder of this section, we derive an upper bound

on the P (error|stis sent). To facilitate this derivation, let us
assume that there is a Genie who can tell us if ŝ found in

the first part of our algorithm is such that (ŝ∗st)
2 < α. We

formulate a slightly modified version of the algorithm and

refer to it as the Genie. Its solution is ŝ1 such that

if (ŝ∗st)
2 < α ŝ1 = ŝ

if (ŝ∗st)
2 ≥ α ŝ1 = s̄ (10)

The probability of error for the Genie algorithm is given by

P g
e =

2T∑
i=1

Pg(error|stis sent)P (stis sent). (11)

Clearly, our original algorithmwill have smaller probability

of error than the Genie since in the case when they differ,
the original algorithm can work only better. Hence, we con-

centrate on bounding the probability of the Genie, i.e., on
bounding Pg(error|stis sent). To this end, note that

Pg(error|stis sent) = P (ŝ1 �= st)

= P (∃i : ŝ1 = si �= st) ≤
∑
si �=st

P (ŝ1 = si �= st)

≤
∑

(s∗
i
st)2<α

P (ŝ1 = si �= st)+
∑

(s∗
i
st)2≥α

P (ŝ1 = si �= st).

(12)

Let us consider P (ŝ1 = si �= st, (s
∗
i st)

2 < α) in more
details. (For the brevity of notation, in the following ex-

pressions we omit that everything is conditioned on st being

transmitted, and that (s∗i st)
2 < α.) So,

P (ŝ1 = si �= st) = P (ŝ1 = si �= st|ŝ1 = ŝ)P (ŝ1 = ŝ))

+ P (ŝ1 = si �= st, ŝ1 �= ŝ). (13)

Let us define function C as C(s) = TrXX∗
ss
∗. Further-

more, let E denote the event that (ŝ1 = si �= st, ŝ1 �= ŝ).
Clearly, E implies that C(si) = C(ŝ1) ≥ C(ŝ) ≥ αC(st),
which further means that C(si) ≥ αC(st). Using this, we
obtain P (ŝ1 = si �= st, ŝ1 �= ŝ) ≤ P (C(si) ≥ αC(st)).
Also, following the similar argument, it is not difficult to
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see that P (ŝ1 = si �= st|ŝ1 = ŝ)P (ŝ1 = ŝ)) ≤ P (C(si) ≥
αC(st)). Replacing the obtained inequalities in (13) we
have

P (ŝ1 = si �= st, (s
∗
i st)

2 < α) ≤ 2P (C(si) ≥ αC(st)).
(14)

Now, let us consider P (ŝ1 = si �= st, (s
∗
i st)

2 ≥ α). It is
easy to see that

P (ŝ1 = si �= st, (s
∗
i st)

2 ≥ α) ≤ P (C(si) ≥ C(st)).
(15)

Substituting (14) and (15) in (13), we finally obtain

Pg(error|stis sent) ≤
∑

(s∗
i
st)2≤α

2P (C(si) ≥ αC(st))

+
∑

(s∗
i
st)2≥α

P (C(si) ≥ C(st)). (16)

In the remainder of this section, we compute bounds on

Pit|(s∗
i
st)2<α = P (C(si) ≥ αC(st)|stis sent, (s

∗
i st)

2 <

α), Pit|(s∗
i
st)2≥α = P (C(si) ≥ C(st)|st is sent, (s

∗
i st)

2 ≥
α),

Pit|(s∗
i
st)2<α = P (Tr(X∗

si)(X
∗
si)
∗ ≥

αTr(X∗
st)(X

∗
st)
∗|st is sent). (17)

Since we assume that st was transmitted, it holds that X =√
ρT sth+W . To make writing easier let k = ρT .Replacing
this value forX in (17), we obtain

Pit|(s∗
i
st)2<α = P (Tr(

[
h

W

]∗
Qn

[
h

W

]
≥ 0|st is sent),

(18)

where

Qn =

[√
ks∗t
I

]
(sis

∗
i − αsts

∗
t )

[√
kst I

]

=

[√
ks∗t
I

] [
si st

] [1 0
0 −α

] [
s
∗
i

s
∗
t

] [√
kst I

]

=

[√
kψ∗it

√
k

si st

] [
1 0
0 −α

] [√
kψit s

∗
i√

k s
∗
t

]
,

and ψit = s
∗
i st. Although it is possible to compute explic-

itly the probability in (18), we will find that it is sufficient

to find its Chernoff bound. In particular,

Pit|(s∗
i
st)2<α ≤ min

μ
Ee

μ(Tr(

2
4 h

W

3
5

∗

Qn

2
4 h

W

3
5))

=

=

∫
e
−Tr(

2
4 h

W

3
5

∗

(I−μQn)

2
4 h

W

3
5)

dhdW

πN
=

1

det(I − μQn)N

(19)

We first simplify the determinant in the denominator as

det(I−μQn) = det(I−μ

[
kψitψ

∗
it + 1 (k + 1)ψit

−α(k + 1)ψ∗it −α(k + 1)1

]
).

After some further algebraic transformations we obtain

det(I−μQn) = (k+1)α(V (it)−1)(−μ+ξ(1))(−μ+ξ(2))
(20)

with

ξ(1) =
V (it)−α+ 1−α

k
+

r
(V (it)−α+ 1−α

k
)2+ 4α(1−V

(it))(k+1)

k2

2α(V (it)−1) k+1
k

,

ξ(2) =
V (it)−α+ 1−α

k
−

r
(V (it)−α+ 1−α

k
)2+ 4α(1−V

(it))(k+1)

k2

2α(V (it)−1) k+1
k

,

and V (it) = ψitψ
∗
it. Although our results will hold for any

SNR, to make writing less tedious in the rest of the paper we

consider only the case of large SNR. Therefore, the previous

results simplify to

Pit|(s∗
i
st)2<α ≤ 1

(k (α−V (it))2

4(1−V (it))
)N

. (21)

To compute the bound onP (C(si) ≥ C(st)|stis sent, (s
∗
i st)

2 ≥
α) we will use a well known result from the literature (see
e.g.,[4])

Pit|(s∗
i
st)2≥α ≤ 1

(k (1−V (it))
4 )N

. (22)

Now we can substitute the results from (21) and (22) in (16)

and obtain

Pg(error|stis sent) ≤
∑

(s∗
i
st)2<α

2
1

(k (α−V (it))2

4(1−V (it))
)N

+
∑

(s∗
i
st)2≥α

1

(k (1−V (it))
4 )N

. (23)

Recall that in the case of the exact ML decoding, which

requires algorithms none of which is of polynomial com-

plexity, we have for the same probability of error

PML(error|stis sent) ≤
∑

(s∗
i
st)2<α

1

(k (1−V (it))
4 )N

+
∑

(s∗
i
st)2≥α

1

(k (1−V (it))
4 )N

. (24)
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Clearly, comparing (23) and (24) it follows that the algo-

rithm based on the well known SDP relaxation (slightly re-

fined here for the purposes of the valid proof) has the same

diversity as the exact ML solution. Of course, since the

SDP-relaxation algorithm is only an approximation, the ex-

act ML solution still has an advantage of ( 1−V (it)

α−V (it) )
2 in the

coding gain.

We summarize the previous results in the following the-

orem.

Theorem 1 Consider a problem of joint channel estimation
and signal detection for a SIMO system described in (1).
Assume that any codeword st was transmitted. Then the
probability that an error occurred if Algorithm 1 was ap-
plied to solve (3), as a part of the joint channel estimation
and signal detection process, can be upper bounded in the
following way

P (error|stis sent) ≤
∑

(s∗
i
st)2<α

2
1

(ρT (α−V (it))2

4(1−V (it))
)N

+
∑

(s∗
i
st)2≥α

1

(ρT (1−V (it))
4 )N

.

Proof:Follows from the previous discussion.
At the end, let us elaborate briefly on the complexity

of the algorithm that we proposed. By carefully inspecting

it, one can note that due to the modification of the conven-

tional SDP randomized algorithm, our algorithm is strictly

speaking no longer polynomial. However, for the cases

where T < 60, the additional amount of operations on
top of the basic SDP core of the algorithm is of effectively

negligible complexity (although, strictly speaking, this ad-

ditional amount is what makes our algorithm being expo-

nential). To see this, note that the additional complexity is

equal to the number of the vectors s which satisfy inequal-

ity (s∗ŝ)2 ≥ α = 2
π , |Sc|. Clearly, this number can be

upper-bounded as

|Sc| ≤
⌊

T (1 −√
α)

2

⌋(
T

�T (1−√α)
2 	

)
≤ T 4.2, if T < 60,

(25)

where we have assumed that for T < 60 complexity of solv-
ing an SDP is 604.2.

However, using the fact that for large T and small k,(
T
k

) ≈ 2TH(k/T ), (where H(k/T ) is the entropy function
evaluated at k/T ), one can show that

⌊
T (1 −√

α)

2

⌋(
T

�T (1−√α)
2 	

)
≈ 2TH(�(1−√α)/2	) = 20.47T .

(26)

The previous expression implies that the additional amount

of computation introduced to ensure validity of our proof

is indeed exponential, while of course in the limit of large

T the complexity of solving SDP becomes T 3.5. However,

the exponential constant is two times smaller than in the ex-

haustive search. Therefore, in communications, where the

dimension of practical SIMO systems is rarely bigger than

60, the complexity of our algorithm is of the same order as
the complexity of the SDP.

4. DISCUSSION AND CONCLUSION

We proposed a modification of the SDP relaxation for solv-

ing the joint channel estimation and data detection problem

in single-inputmultiple-output communication systems. The

computed PEP implies that the performance of the algo-

rithm is comparable to that of the optimal ML solution, but

is obtained at potentially significantly lower computational

complexity. Of course, it would be of a great interest if one

could construct a provably polynomial algorithm which has

the same PEP performance as the one we analyzed in this

paper. That will be subject of a future work.
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