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ABSTRACT

In this paper, we propose a new iterative approach for su-

perimposed training (ST) that improves synchronisation, DC-

offset estimation and channel estimation. While synchroni-

sation algorithms for ST have previously been proposed in

[2],[4] and [5], due to interference from the data they per-

formed sub-optimally, resulting in channel estimates with un-

known delays. These delay ambiguities (also present in the

equaliser) were estimated in previous papers in a non-practical

manner. In this paper we avoid the need for estimation of this

delay ambiguity by iteratively removing the effect of the data

“noise”. The result is a BER performance superior to all other

ST algorithms that have not assumed a-priori synchronisation.

Index Terms— Synchronisation, Fading channels, Itera-

tive methods, Estimation.

1. INTRODUCTION

In communications, the channel estimation problem is often

solved by the inclusion of a training sequence. An alternative

method is the superimposed training (ST) scheme, where a

periodic training sequence is added to the data sequence [1]-

[6], at the expense of small data power loss. In ST, it is impor-

tant that the position within the received sequence, that cor-

responds to the start of a training sequence period, is known

at the receiver. We will refer to this kind of synchronisation

as training sequence synchronisation (TSS). TSS for ST was

first studied in [2] in conjunction with DC-offset estimation.

The TSS method presented in [2] was based on higher-order

statistics (HOS) and polynomial rooting, and only required

that the training sequence period (P ) is no smaller that the

number of channel taps (M), i.e. P ≥ M . The use of HOS

and polynomial rooting was avoided in the TSS method pre-

sented in [4], but required P ≥ 2M + 1. A lower complexity

synchronisation algorithm was proposed in [5] based on struc-

tural properties of the vector containing the cyclic means of

channel output. But as we will show, it is outperformed by

the algorithm presented here.

S. M. A. Moosvi is funded by the ORS Scheme and the University of
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Objectives and Contributions: Although synchronisa-

tion using ST was covered in [2],[4] and [5], it suffered from

interference due to the transmitted information-bearing data.

In this paper, we will remove the effect of the information

data “noise” on the synchronisation process. This is done in

an iterative manner, where the equalised symbols (obtained

through traditional ST in a first step) are fed back to the pro-

posed ST synchronisation algorithm so that the data “noise”

can be successively reduced, and hence achieve better syn-

chronisation, DC-offset estimation, channel estimation and

symbol detection. This new method for TSS gives a much

better performance than the existing methods for ST synchro-

nisation in [2],[4] and [5] in terms of the MSE of the channel

estimates and the BER. Finally note that while [6] also de-

scribes a form of iterative ST (but different from that proposed

here), it assumes perfect synchronisation exists.

Notation: Superscript ‘†’and ‘T ’ denote pseudo-inverse

and transpose operator respectively. For matrix A, define

A[L]c and A[L]c to correspond respectively to its first and last

L columns. Furthermore, A[L]r and A[L]r respectively de-

note its first and last L rows. Further, for any matrix A, Aτ

is obtained by cyclically shifting the columns of A to the left

by τ . 1P×Q and 0P×Q correspond respectively to P × Q
matrices of ones and zeros. IP is the P × P identity matrix.

Finally, ‖.‖ represents the Euclidean norm of a vector.

2. SYSTEM MODEL

The received data block in the ST method has the following

form:

x(k) =

M−1
∑

l=0

h(l)b(k−τs−l)+

M−1
∑

l=0

h(l)c(k−τs−l)+n(k)+d

(1)

where k = 0, 1, . . . , N − 1, b(k) is the information bearing

sequence, h(k) is the channel impulse response, n(k) is the

noise, d represents an unknown DC-offset term due to using

first-order statistics [2], [4], and the integer τs is the sym-

bol synchronisation offset between the transmitter and the re-

ceiver. It is assumed that all terms in (1) are complex; that

b(k) and n(k) are from independent, identically distributed



(i.i.d) random zero-mean processes, with powers σ2
b and σ2

c

respectively; and that the channel is of known order M − 1,

i.e. h(0) 6= 0 and h(M −1) 6= 0. Furthermore, c(k) is the pe-

riodic superimposed training sequence (period P ≥ M ) with

power σ2
c = 1

P

∑P−1
k=0 |c(k)|2.

The effect of τs in our set-up is as follows. For τs = 0,

(i.e., when there is perfect synchronisation), then x(0) marks

the start of the received block. But when τs 6= 0, then x(τs)
should mark the start of the received block– but of course,

τs is unknown. As we will shortly show, for a proper oper-

ation of ST, τs must be determined modulo-P . So the prob-

lem now becomes to establish TSS for ST and then estimate

the channel {h(m)}M−1
m=0 from {x(k)}N−1

k=0 . Ideally of course

{x(k)}τs+N−1
k=τs

should be used, but this is impossible since

τs is not known. Now since the transmitted and received

blocks are N -samples long and 0 ≤ τs ≤ N − 1, where

τs = τP P + τ , 0 ≤ τP ≤ NP − 1, 0 ≤ τ ≤ P − 1 and

NP = N/P , then we can estimate the cyclic mean of (1) as

ŷ(j) =
1

NP

NP−1
∑

i=0

x(iP + j) (2)

with j = 0, 1, . . . , P − 1, where y(j) ≡ E{x(iP + j)} is

the true cyclic mean (period P ). So from (1) and (2)

ŷ(j) =

M−1
∑

m=0

h(m)b̃(j − τ − m)+

+

M−1
∑

m=0

h(m)c(j − τ − m) + ñ(j) + d

(3)

where b̃(k) = 1
NP

∑NP−1
i=0 b(iP + k) with k = 1 − P, 2 −

P, . . . , P − 1 and ñ(j) = 1
NP

∑NP−1
i=0 n(iP + j) with j =

0, 1, . . . , P − 1. So (3) can now be written as

ŷ = (C[M ]c
τ + B̃[M ]c

τ )h + d1P×1 + ñ (4)

where h = [h(0) . . . h(M − 1)]T and ŷ = [ŷ(0) . . . ŷ(P −
1)]T , with a similar expression for ñ. The matrices Cτ and

B̃τ are cyclically shifted versions of C and B̃ respectively,

with (.)τ as defined in section 1. Note that C is a P × P
circulant matrix with first column [c(0) c(1) . . . c(P − 1)]T ;

and B̃ = B̃1 + B̃2, where B̃1 is P × P circulant with first

column [b̃(0) b̃(1) . . . b̃(P − 1)]T and B̃2 is P × P upper

triangular Toeplitz and
[b(−k)−b(N−k)]

NP

are the elements of the

k-th (k = 1, 2, . . . , P −1) upper diagonal. Due to the usual

choice of relatively large NP , we have B̃2 ≈ 0. So (4) can be

approximated as

ŷ ≈ (C[M ]c
τ + B̃

[M ]c
1,τ )h + d1P×1 + ñ (5)

⇒ ŷ ≈(Cτ + B̃1,τ )
{

[hT 01×(P−M)]
T

+ m1P×1

}

+ ñ
(6)

where m = d/(P (c + b̃)), c = 1
P

∑P−1
k=0 c(k) and b̃ =

1
P

∑P−1
k=0 b̃(k). So an estimate for h and m is

[ĥT 01×(P−M)]
T + m̂ = (Cτ + B̃1,τ )−1ŷ (7)

where m̂ ≈ m̂1P×1. We will now show how all the infor-

mation regarding the synchronisation and channel estimation

can be extracted from the LHS of (7).

3. PROPOSED SYNCHRONISATION, DC-OFFSET

AND CHANNEL ESTIMATION ALGORITHM

Now when there is perfect TSS, i.e., τ is assumed known,

then the information about the channel coefficients can be ex-

tracted from (7). But we first need m̂, which can be found (in

practice) by averaging over all P − M values as follows:

m̂ =
1

P − M
11×(P−M)

(

(Cτ + B̃1,τ )−1ŷ
)

[P−M ]r
. (8)

Now the estimated channel coefficients are

ĥ =
(

(Cτ + B̃1,τ )−1ŷ − m̂1P×1

)[M ]r
. (9)

But in practice, the actual constant offset τ is unknown. So

now replacing the fixed (but unknown) τ in the RHS of (7)

with a variable τ ′, 0 ≤ τ ′ ≤ P − 1, is equivalent to cyclically

permuting the LHS of (7) to give

Pτ ′

{

[ĥT 01×(P−M)]
T + m̂1P×1

}

= (Cτ ′ + B̃1,τ ′)−1ŷ

(10)

where Pτ ′ is a permutation matrix formed from shifting P =
I by τ ′ columns to the left. Note that the RHS of (10) is an

unknown cyclic permutation of the RHS of (7). Thus, the in-

formation about the channel coefficients is still contained in

(10), but now the information has to be extracted in a differ-

ent way, i.e., we need to cyclically permute (10) back to its

original form in (7). In order to achieve the synchronisation

we propose to exploit the special structure of the vector in the

LHS of (7), which has its last P −M elements of equal mag-

nitude. It should be noted that although [5] also uses the spe-

cial structure of the vector containing the cyclic means of the

channel output, it suffers due to interference from data. But in

this proposed method, the data will also be used as effective

training in an iterative fashion. So we simply search the RHS

of (10) ( for different values of τ ′) until the last P − M ele-

ments
(

i.e.
(

(Cτ ′ + B̃1,τ ′)−1ŷ
)

[P−M ]r

)

are all equal— as

would theoretically be the case for proper synchronisation as

in (7). Hence we propose to obtain synchronisation by min-

imising the cost function

J (τ ′) = ||V
(

(Cτ ′ + B̃1,τ ′)−1ŷ
)

[P−M ]r
|| (11)

where V := I(P−M) − 1
P−M

1(P−M)×(P−M) acting on a

vector produces the same vector with its mean removed from



each element. Hence J (τ ′) = 0 iff the last P − M elements

of
(

(Cτ ′ + B̃1,τ ′)−1ŷ
)

[P−M ]r
are all equal. So the synchro-

nisation offset is estimated (in practice) using

τ̂ = arg min
0≤τ ′≤P−1

||V
(

(Cτ ′ + B̃1,τ ′)−1ŷ
)

[P−M ]r
|| (12)

and the channel estimate obtained with

ĥ =
(

(

(Cτ̂ + B̃1,τ̂ )−1
)[M ]r−

− 1

P − M
1M×(P−M)

(

(Cτ̂ + B̃1,τ̂ )−1
)

[P−M ]r

)

ŷ

(13)

where we have used the last P − M elements of (10) to es-

timate the scaled DC-offset and then used it along with first

M elements of (10) to obtain the channel estimates. But note

that (at the receiver) we have no a-priori knowledge of B̃1,τ ′

in (11)-(13). So to overcome this problem we propose the fol-

lowing iterative algorithm:

Iterative Synchronisation, DC-Offset Estimation and Chan-

nel Estimation Algorithm

a) Evaluate ŷ(j) in (2).

b) Estimate τ̂ using (12), by setting B̃1,τ ′ = 0.

c) Estimate the channel using (13), setting B̃1,τ̂ = 0.

d) Design a MMSE equaliser (from (c)) and filter x(k)
(in (1)) to estimate b(k) and hence obtain the estimate
ˆ̃
B1,τ̂ .

e) Repeat steps (b) to (d), but now using estimated B̃1,τ̂ .

This is the end of iteration one.

f) Perform subsequent iterations until there is little appre-

ciable change in τ̂ .

(Note that for simulations purposes later on we will refer to

operations (a) to (d) as “step 1”—i.e. using B̃1,τ ′ = 0 and

B̃1,τ̂ = 0.) Finally, as our algorithm achieves correct syn-

chronisation by permuting the LHS of (10) until (theoreti-

cally) the last (P − M) elements are all equal (i.e., m̂), so

we must ensure that ĥ itself cannot have (P − M) equal ele-

ments, or the algorithm will fail. Setting P−M > M ensures

this, as ĥ has only M elements.

Remark 1: It should be noted that the method presented in

[4] and [5] attempts synchronisation, but due to the interfer-

ence from data and due to the presence of noise the TSS al-

gorithm fails to correctly estimate the true synchronisation

offset, which has the effect of delays/advances in the esti-

mated channel impulse response and so this delay ambigu-

ity also causes the equaliser output to be similarly delayed.

Therefore [4] and [5] resort to estimating this (equalisation)

delay by comparing the equalised sequence, shifted by differ-

ent amounts, with the transmitted symbols {b(k)} in order to

compute the BER. So the delay providing the smallest BER

is the actual true equalisation delay, and this can now be com-

pensated for. In [5] this delay is then used to compute the cor-

rect MSE of the channel estimates. The problem is, of course,

that in practice we cannot use the transmitted symbols to cal-

culate this equalisation delay, via BER. In this paper, since we

reduce the interference from data on synchronisation, we can

avoid compensating for the equalisation delay, which cannot

be obtained in practical applications. It should be noted that

the only errors in synchronisation in our proposed method are

due to the additive noise term ñ in (6) and the approximation

B̃2 ≈ 0.
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Fig. 1. Synchronisation error rate (see (14)) using the pro-

posed iterative ST method. The results using the methods in

[4] and[5] are also included for comparison.

4. SIMULATION RESULTS

We will now proceed with some simulations to test our syn-

chronisation algorithm. The channel h(k) was a three tap

complex Rayleigh fading: both real and imaginary parts of the

channel taps follow a normal distribution, rescaled to achieve

unit mean energy channel
(

E
[
∑M−1

m=0 |h(m)|2
]

= 1
)

. The

data was a BPSK sequence, to which a training sequence ful-

filling CCH = Pσ2
c I as in [2] was added before transmission.

The training to information power ratio
(

TIR =
σ2

c

σ2

b

)

was set

to 0.2 , P = 7, N = 399, DC-offset d =
√

0.1 and a linear

MMSE equaliser of length Q = 11 taps was used throughout

as in [4]. The MMSE equaliser operates using its optimum

delay– i.e., for a given delay α an MMSE equaliser (wα) was

computed, and αopt = arg minα

{

∑∞

k=−∞ |δ(k−α)− (ĥ ∗

wα)(k)|2
}

, was used. In each Monte Carlo run, a random



synchronisation offset between 0 and N − 1 was introduced

between the transmitter and the receiver, so that we could be

at any sample index within the first block. The synchronisa-

tion error rate (γ) is defined as

γ =
No. of errors in estimating the synchronisation offset

Total no. of Monte Carlo runs
(14)

where an error is said to occur when τ̂ 6= τ . So Figure 1

shows the synchronisation error rate. It can be seen that the

proposed method for synchronisation completely outperforms

all existing conventional ST synchronisation schemes and we

achieve maximum performance after only two iterations. As

mentioned earlier, we can see that there is still some interfer-

ence, due to the approximation of B̃2 ≈ 0, which can be ob-

served by the flattening of curve at high SNR. Now Figure 2

shows the MSE of the channel estimates using the proposed

iterative method. We can also see that in two iterations we get

the maximum performance. Again due to the approximation

of B̃2 ≈ 0, we see that the MSE of channel estimates does

not decrease much for higher SNR. Finally, Figure 3 shows

the BER using the proposed method and it completely out-

performs all existing conventional ST schemes and maximum

performance is again reached in two iterations.
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Fig. 2. MSE of channel estimates using the proposed iterative

ST method. The results using the methods in [4] and [5], to-

gether with the results assuming known DC-offset and perfect

TSS for ST, are also included for comparison.

5. CONCLUSION

In this paper, we have presented a new iterative synchroni-

sation and DC-offset estimation algorithm for channel esti-

mation using superimposed training (ST). No a-priori train-

ing sequence synchronisation (TSS) was assumed and a DC-

offset could be present at the output. The proposed method

of synchronisation is based on the particular structure of the
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Fig. 3. BER using the proposed iterative ST method. The

results using the methods in [4] and [5], together with the

results assuming known DC-offset and perfect TSS for ST

when the channel is completely known, are also included.

channel output’s cyclic mean vector. Since the proposed

method reduces the interference due to the data, it does not

require any knowledge of equalisation delay (which cannot

be obtained in practical applications). The simulations show

that the proposed method completely outperforms the existing

ST-based methods of [2],[4]-[5] and maximum performance

is achieved in two iterations.
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