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ABSTRACT was no feasible for a direct practical implementation. Ij [2
. . . an optimum MAP discrete-time rake receiver has been pro-
ln .th'TQ’ 'K;I”‘Kgr’ we cI(.)ns',tl'der t?tehproblem zf MaX|Irnw| ¥ os-f posed for CDMA systems when the channel is not perfectly
eriori ( | )tequarl]za |or: 0 h N trre]:cel\r/]e S|g]|na ovter afre'tknown. In this case, the algorithm can be implemented since
E“e”cy St‘";tf‘c Ve ¢ a””Teh W de”. t.e c E}”t"r‘]e I'\j A”F? p_fr ectiire probability density function (pdf) involved in the deat
nown at the receiver. € dervation ot the CTeron 4, of the MAP criterion can be factored unlike the pdfin.[1]

in this case leads to an expression for which no exact imple., this paper, we consider, as in [1], a data transmission sys

mentation exists in the literature.  In this paper, we PIeDOStem over a frequency selective channel. Our aim is to find a

o solve the_ problem by using the EXpECtat'On'MQX'm'za.t'orbractical implementation to solve the exact problem of MAP

(EM) alg_onthm_. Th(_a algo_nthm e propose has I'r_]ear't'meequalization with imperfect channel knowledge. To do this,

complex!ty per iteration. Simulations show that few itevas . Wwe propose to use an iterative algorithm following the Expec

are required to reach the performance of the MAP equallzetration Maximization (EM) approach [3]. The Maximization

with perfect channel knowledge. step is performed by a Viterbi algorithm. Thus, the algorith
Index Terms— MAP equalization, channel estimation, we propose has linear-time complexity per iteration. More-

EM algorithm, frequency selective channel over, simulation results show that few iterations are resgi

to reach the optimal performance achieved when the channel

is perfectly known at the receiver.

Throughout this paper scalars are lower case, and vectdrs an

. L matrices are bold lower and upper case, respectively. The op
An important source of degradation in high data rate commu- T % n . o
L . . : erators(.)*, (.)* and(.)" denote respectively transposition,
nication systems is the presence of intersymbol interfegen . 4 . . . : .
. L conjugation and transconjugation. Thex L identity matrix
(ISl) between consecutive data symbols originating from th is denoted byl
L-

frequency selectivity of mobile radio channels. To combat
the effects of intersymbol interference, an equalizer bdset
used. In practice, the receiver does not know perfectly tth

. . ; : e consider a data transmission system over a frequency se-
channel and has to estimate it. In this paper, we consider tr]e : . . . : .
?ecnve channel. The inputinformation bit sequence is negbp

case where the equalizer has an imperfect channel estimato the symbol alphabet. We assume that transmissions are

provided by another module in the receiver, namely the Chanérganized into bursts ok symbols. The channel is supposed

nel estimator. In most previous works, the equalizer assUM&, e invariant during one burst. The baseband complexkigna

_pe_rfect channel knowledge an_d uses the c_hanne_l estimate éae?mpled at the symbol rate and received at tni
if it was the true channel. This approach is obviously sub-

1. INTRODUCTION

2. SYSTEM MODEL

optimal and the equalization algorithm has to be rederived i L-1
order to take into account the channel estimation errorgs Thy, = Z hisg_1+wy =sth+w,, YO<k<K+L—2
problem of equalization for non-ideal channel knowledge ha 1=0
been tackled in [1, 2]. In [1], Tuchlest al. considered a (1)

Maximum a Posteriori (MAP) equalizer in the case of trans- Where:
mission over a frequency selective channel. They derived th

metric to be minimized for this problem and suggested to use
sequential decoding or sphere decoding to solve it, since it

1) s € C,for0 < k < K—1, are the transmitted symbols
and take their values from the alphabkt The virtual
symbolss, € C,forl — L < k < —1, are assumed
A. Roumy is supported in part by the Network of Excellence iinéléss to be known at the receiver and can be seb.towe

Communications (NEWCOM), E. C. Contract no. 507325. introduce the vectas, = [sy....sx_r11]T € CL.




2) wy € C,for0 < k < K + L — 2, are AWGN complex available at the receiver. Replaciibgby h in the MAP al-
samples with pdN¢ (0, o2), whereNc (o, 02) denotes  gorithm leads to an error for which a closed form expression
a Gaussian distribution with meanand variance2. is derived in [6]. Hence, in this paper, we consider the exact

. o MAP problem that takes into account the channel estimate
3) h = [hg...hp—1]" € CE is the channel realization oror. This MAP problem reads:

vector and is circularly symmetric complex Gaussian

distributed with pdiN¢ (0, R;,), whereR,, is the chan- § = arg max p(s|r, ﬁ). (8)
nel covariance matrix. The pdf &f is given by s

This criterion was first derived in [1] but no efficient imple-

p(h) = L exp (_hTRglh) (2) mentation was yet proposed. In this paper, we propose to use
det(mRp) ' the EM-algorithm which has a linear-time complexity per it-
eration.

4) K andL denote the burstlength and the channel mem- 4 PROPOSED SOLUTION: EM-ALGORITHM
ory, respectively.
We consider the EM algorithm [3, 7] to solve the problem (8)

_ T _1)-
Lets = [sx—1,...,s1-2]" bethe { + K —1)long vector o oaconaple complexity. The algorithm consists in two

of symbols and be the associateds + L — 1) x L Hankel

teps:
matrix having the last colump g 1, - - -, sl,L]T and the last P
row [so, - - , $1—1]. The received signal model in (1) can be ; « ~
rewritten in a matrix form as E:Q (S’ S ) = | logp (S|r’ b, h) p (h|r’ h,s ) dh (9)
r—Shiw (3) M : st = arg mSaxQ (s,s") (10)
With t = [rgr 2, .. 70]T andw = [wrsr_2, ..., wo]”. It whereE stands for the expectation step avidor the maxi-
follows that: T T mization step of the EM algorithm. It can be shown that under
some mild conditions and for close enough initial estinséte
1 K+L-2 7y, — sTh? to the global maximum [7], the algorithm converges to the
p(rlh,s) = o) RrET P | — > 0 MAP estimated sequenéedefined in (8):
k=0
(r — Sh)f(r — Sh) s' —8
= (ro2)K+L-1 exp <_ o2 (4)

In order to justify the previous result, we show that the APP
The channel estimator computes estimdiesf the channel (2 posteriori probability) p(s|r, h) in (8) increases with any

that can be modeled as a noisy versioof increase in the functio(s, s’) in (9), with respect te. By
using the inequalityog x < x — 1,Vx > 0, coming from the
h=h+b concavity of the log function, we obtain:

with b being a complex AWGN, independentbf Thisisa @ (s,s’) — Q (s',s)

general model that encompasses the least mean square error (S h|r ﬁ)
estimator of the channel that uses a training sequencet[4]. | _ 1 /log ps b p (Si hir fl) dh
follows that p(si|r, h) D (Si’h|r’ﬁ) Y
. 1 . . .
hh) = ———— —(h—h)'R;'(h—h h|r,h
YO = gy 0 (ERIGN) @1 <( m )> ) (bR
- 1 - - ~ p(s’[r,h) p (st hjr,h
h) = —h"(R, +Ry)"'h) (6 o
P = S rm, TR eXp( (Rpy + Ro) ) ©)

oy (o) (1)

Hence, whenevep (s'*!,s") > Q (s*,s*) (which holds thanks

3. PROBLEM STATEMENT

When the channel is known, the data estimate according to i T P
the MAP sequence criterion is given by 10 (10)).p (S Ir, h) =y (S r, h)'
§ = arg max p(s|r, h). () 5. EFFICIENT IMPLEMENTATION

which can be solved efficiently by the Viterbi algorithm [5]. This section details a possible implementation of this algo
Here, however, an estimate but not the true channdl is  rithm showing its linear-time complexity per iteration.



5.1. E-step
First, by noticing thap (s|r,h,f1) = %

tion @ in (9) can further be simplified into:

, the func-

Q (s,s") = /logp (r|s,h)p (h|r, h, si) dh + logp (s)

- /logp(r|h)p (h|r,ﬁ,si) dh

[0

Sinceq, the third term of the right-hand side, is independent

with

1 1
R;! gs*s +37! = FsTs +R; P+ R (17)

1 1 .
d =Ry (—28*r+21u) Ry (—QS*HR;lh)
o g

. : (18)
5.1.2. The expectation of the metric

Using the above derived pdf in (16), we are now able to per-
form the expectation:

Eh\r,fl,s”’ [rk - S£h|2] = |Tk - Sgdi|2 + Sg zls;;

of s, it does not influence the maximization in (10). Thus, wewhered? and R?} correspond to (18) and (17), respectively,

focus on the computation gflog p (rs, h) p (h|r, h, si) dh.
5.1.1. Thepdfp (h|r, i, si)

We now compute the pgf (h|r, h, s’?) and skip the exponent

1 for notation simplicity. Using the independence between

(h,h) ands, and betweer andh given (h,s), the Bayes’
rule reads:

+ \ _ p(r|h,s)p(h|h)
P (h|r, h, s) = p(r|fl, S )

We proceed by computingh|h). Using the Bayes’ rule and
the expressions of the pdfs (2), (5) and (6), we obtain

(11)

p(hjh)

dot(rs) P (-(h—u)'="'(h —u)[12)

with 2! = R, ' + R, ' andu = =R, "h. The derivation
of p(r|h, s) needs an additional expectation since

p(rfh,s) = / p(z|h, s)p(h]h)dh

Using (4) and (12), we obtain

A 1 B
p(rfh,s) = m exXp (—(r - C)TRC 1(T - C)) (13)
with
R. = o’ Ixir_1+SZS! (14)
S L ot -1 - -1

Finally, by using the Bayes’ rule in (11) and the pdfs in (4),
(12) and (13), the desired pdf is given by:

p(h|r,h,s) = exp (—(h —d)'R;'(h - d))

(16)

1
det (ﬂ'Rd)

with the variables set to the valug®. Finally, the function is
given by:

. 1 Kil-2 . .
Q(s,s") = - Z (Jr —spd'|> +sf Ris;)
k=0

— (K + L —1)log(ro®) +logp(s) —a (19)

Hence, by noticing that the functiad (s, s’) is quadratic in

s (it consists of an Euclidean distance metric with an extra
quadratic term), the maximization 6f (s, s*) over all possi-
ble s can be performed with the Viterbi algorithm.

5.2. M-step

From (19), the maximization step (10) can be performed re-
cursively by using the Viterbi algorithm with branch met-
ric (|re —sfd’|? + s{Ris;), statesr, = (sk, ..., Sk—L+2),

anda priori probability (for the symbolsp(s). Thisa priori
corresponds to the knowledge available about the sequence
There can be either no knowledge (equiprobable sequences),
or knowledge about the training sequences (midamble) er par
tial knowledge about the symbols provided by a decoder in
turbo-equalization.

5.3. Summary of the algorithm: an efficient implementa-
tion of the algorithm

In this paper, we have proposed to use the EM algorithm in
order to solve the exact MAP problem given in (8) and have
shown that this algorithm admits a linear-time complexity p
iteration implementation:

e Initialization with s®
e For each iteration index
1. ComputeR}, andd’ defined in (17) and (18), re-
spectively, withs’ used instead of.
2. Perform a Viterbi equalizer with branch metric
Ik — sk d'|* + s Rysy

anda priori probability (for the symbols)(s).
The metric minimizing sequence at the output of
the Viterbi equalizer is*+!.
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Notice that the complexity of the algorithm can be reduced,
whenK is sufficiently high, by approximating's in (17) by
(K+L—-1)IL.

6. SIMULATION RESULTS

We consider the transmission of BPSK symbols over a fre- ¢
guency selective channel. The symbols are assumed to be®
equiprobable. The channel length is setlto= 5. The dif-

10°

ferent channel taps are modeled as independent zero mear — e,

complex Gaussian random variables with variah¢é. The = fera

channel is quasi stationary, i.e. it is time invariant dgrin 7 pertect channel knowledge

the transmission of a burst & = 512 information bits and S ——

changes independently from burst to burst. The channel esti ¢ 7 0 SgR 10 i 2

mateh is obtained by a least mean square error estimator us-

ing a training sequence of lengkfy, [4]. Figures 1 and 2 show Fig. 2. BER performance for one to four iterations of the EM
the Bit Error Rate BER) obtained using the EM algorithm algorithm whenk, = 20

from one to four iterations, with respect to the signal taseoi

ratio (SVR), when the training sequence length is equal re—rpo \AP criterion was first derived in this case in [1] but

spectively toK, = 14 and Ko = 29' Hert_e,SNR - QEb/_NO no exact practical implementation was proposed. In this pa-
whgreEb is the energy per transmitted bitang = o~. S|m-. per, we proposed a linear-time complexity per iterationlgnp
ulatlong Sh_OW that n both cases, the performance achievegleniation using the EM-algorithm when the channel is quasi
at the first iteration is roughly equal to the performance obaiionary. Each M step consisted in a Viterbi algorithnm Si
tained when the MAP equalizer assumes that h (curve ,at0n results show that after few iterations, our recepes-

labelled: 'simple use of channel estimate’). We also noticq,mance attains the performance achieved when the channel
that the performance of the EM algorithm at the fourth itera-

X X “Is perfectly known. The case of transmissions over time-vary
tion approaches the performance obtained when the equallzi%g channels will be considered in a future work.

has perfect channel knowledge (dotted curve). Notice that i
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