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ABSTRACT
We propose a speech separation method for a meeting situation,
where each speaker sometimes speaks and the number of speakers
changes every moment. Many source separation methods have al-
ready been proposed, however, they consider a case where all the
speakers keep speaking: this is not always true in a real meeting.
In such cases, in addition to separation, speech detection and the
classification of the detected speech according to speaker become
important issues. For that purpose, we propose a method that em-
ploys a maximum signal-to-noise (MaxSNR) beamformer combined
with a voice activity detector and online clustering. We also discuss
the scaling ambiguity problem as regards the MaxSNR beamformer,
and provide their solutions. We report some encouraging results for
a real meeting in a room with a reverberation time of about 350 ms.

Index Terms— Speech separation, maximum SNR beamformer,
scaling ambiguity, voice activity detector, online clustering.

1. INTRODUCTION
This paper considers speech separation in a meeting situation, where
sources are sometimes active but silent for most of the observa-
tion period. Recently, many blind source separation methods have
been proposed (e.g.,[1–3]). However, most of them assume that all
sources keep speaking during the observation. However, this is not
always the case in a real situation such as a conversation or a meet-
ing. In such a scenario, the meeting recognition has recently been
studied and it has been pointed out that the voice activity detection
(VAD) for each speaker is one of the important topics (e.g., [4]). Be-
yond the VAD, this paper tries to recover each speech stream with a
linear filtering: beamforming.

Let us formulate the task. Suppose that N ≥ 2 speech sources
s1, . . . , sN are convolutively mixed and observed at M sensors,

xj(t) =
PN

k=1

P
l hjk(l) sk(t− l) + nj(t), j=1, . . . ,M, (1)

where hjk(l) represents the impulse response from source k to sen-
sor j, and nj(t) is the observed stationary background noise at sen-
sor j. The speech sk(t) are intermittent signals. Our goal is to obtain
estimates yk of each source signal sk separately from the sensor ob-
servations xwithout information about the number of sources N , the
speech sources sk or the mixing process hjk.

Because we have N ≥ 2 speeches, the other speakers act as the
non-stationary noises for a target signal. Therefore, it is difficult to
apply a single channel noise reduction approach (e.g.,[5]). Such an
approach cannot enhance each source separately, either. When N is
given, we can separate signals with, for instance, independent com-
ponent analysis (e.g.,[2]) or a binary mask approach with k-means

clustering (e.g.,[6]). If hjk or the steering vector of the target signal
is available, widely used beamformers such as the minimum vari-
ance beamformer (MVBF) [7] can enhance the target signal.

However, in this paper, we consider a scenario where none of
these previous knowledge is available. In such a case, speech de-
tection and the classification as well as separation become impor-
tant issues. To realize such a system, we propose a signal extraction
method with a maximum signal-to-noise (MaxSNR) beamformer [7,
8] combined with a VAD and online clustering. The MaxSNR beam-
former maximizes the ratio between the signal power and interference-
and-noise power, which are estimated in “target active” and “target
silent (interferences-and-noise)” periods, respectively. These peri-
ods are estimated by the VAD and online clustering. With the on-
line clustering, we can classify speech signals even if the number of
speeches changes every moment.

The MaxSNR beamformer is attractive because it does not need
information on the target location, such as the steering vector or hjk,
required in widely used beamformers e.g., the MVBF [7]. However,
the MaxSNR beamformer has the scaling ambiguity problem: since
the MaxSNR beamformer does not have any constraint for its gain
to the target direction, the beamformer gains at different frequencies
may differ. This characteristic is problematic when we apply the
MaxSNR beamformer to wide-band signals such as speech mixtures
[8]. The authors of [8] proposed methods for solving the scaling
problem, however, their proposals still need (rough) target location
information. It weakens the merit of the MaxSNR beamformer. We
propose a method that uses a simple linear estimation for the scaling
ambiguity problem.

We report some encouraging results of experiments conducted
during a meeting in a room with reverberation time of about 350 ms.

2. PROPOSED METHOD

This paper employs a time-frequency domain approach. With a T -
point short-time Fourier transform (STFT), (1) is converted into:

xj(f, τ) =
PN

k=1 hjk(f)sk(f, τ) + nj(f, τ), (2)

or in vector notation,

x(f, τ) =
PN

k=1 hk(f)sk(f, τ) + n(f, τ) (3)

where hjk(f) is the frequency response from source k to sensor j,
sk(f, τ) and nj(f, τ) are the STFTs of a source sk and noise nj
respectively. f ∈ {0, 1

T
fs, . . . ,

T−1
T

fs} is a frequency (fs is the
sampling frequency) and τ(= 1, · · · ,K) is a time-frame index. The
vectors are x = [x1, . . . , xM ]

T , hk = [h1k, . . . , hMk]
T and n =

[n1, . . . , nM ]
T .
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Fig. 1. Flow for proposed method.

Figure 1 shows the system flow of our proposed method. As the
body of our system, we employ a maximum signal-to-noise (MaxSNR)
beamformer [7]. It maximizes the ratio between the output powers
for the target-active and the target-silent periods. When such a beam-
former wk(f) is obtained for source k, the k-th output signal can be
obtained by

yk(f, τ) = wH
k (f)x(f, τ) . (4)

Let P = {1, . . . ,K} be the whole period of K observations
x(f, 1), . . . ,x(f,K) at each frequency, Pk

T ⊂ P be the target-
active period when the target source sk is active, and Pk

I ⊂ P be
the target-silent period when the target sk is NOT active but interfer-
ences and noise may active. In this paper we assume Pk

T ∪Pk
I = P .

In this section, first we describe the MaxSNR beamformer, and
then how to estimate Pk

T and Pk
I for the MaxSNR beamformer.

2.1. Maximum SNR beamformer

The design criterion for the beamformer wk(f) is to maximize the
ratio λ(f) of the output power between the target-only period Pk

T

and the interference-and-noise-only period Pk
I :

λ(f) =
E{|yk(f, τ)|2}Pk

T

E{|yk(f, τ)|2}Pk
I

=
wH

k (f)R
k
T(f)wk(f)

wH
k (f)R

k
I (f)wk(f)

(5)

where Rk
T(f) and Rk

I (f) are the correlation matrices of observa-
tions

Rk
T = E{x(f, τ)xH(f, τ)}Pk

T
=

1

|Pk
T |

X

τ∈Pk
T

x(f, τ)xH(f, τ),

Rk
I = E{x(f, τ)xH(f, τ)}Pk

I
=

1

|Pk
I |

X

τ∈Pk
I

x(f, τ)xH(f, τ)

where |P| denotes the number of elements of the set |P|.
By differentiating λ(f) with wk(f) and setting it at 0, we have

Rk
T(f)wk(f) = λ(f)Rk

I (f)wk(f). (6)

Obtaining the maximum λ(f) corresponds to calculating the largest
eigenvalue of the generalized eigenvalue problem (6), and the corre-
sponding eigenvector e(f) gives the solution for the MaxSNR beam-
former

wk(f) = e(f). (7)

(6) is simplified to an eigenvalue problem by multiplying both sides
by [Rk

I (f)]
−1.

2.2. Scaling determination

The MaxSNR beamformer does not have any constraint for its gain,
and so the beamformer gain provided by (7) has a scaling ambigu-
ity. This characteristic should be compensated for if the MaxSNR
beamformer is applied to wide-band signals such as speech.

Inspired by the deflation based blind source separation algorithm
[9], we propose to compensate wk(f) so that the output yk(f, τ)
becomes as close as observations:

x(f, τ) ≈ a(f)yk(f, τ) = a(f)wH
k (f)x(f, τ).

That is, we calculate a(f), which minimizes the following cost func-
tion:

G(a(f)) = E{||x(f, τ)− a(f)yk(f, τ)||2}. (8)

This is a linear least-mean-squares estimation problem [10]. There-
fore, an optimal a(f) can be obtained by setting the differentiation
∂G(a(f))
∂a(f)

at zero:

a(f) =
E{y∗k(f, τ)x(f, τ)}
E{|yk(f, τ)|2} =

Rx(f)wk(f)

wH
k (f)Rx(f)wk(f)

, (9)

where Rx(f) = E{x(f, τ)xH(f, τ)} is the observation correlation
matrix. The scale compensated beamformer is given by a selecting
J-th component aJ ,

wk(f)← aJwk(f). (10)

2.3. Target and noise period estimation

For the MaxSNR beamformer, the Pk
T and Pk

I estimations are very
important. These estimations correspond to the target and interfer-
ence classification. However, the well-known k-means clustering is
difficult to use in a meeting situation where the number of speakers
may change. Moreover, the noise-only periods when no speaker is
active degrade the speaker classification performance.

In order to handle such issues, this paper proposes a method that
employs a voice activity detector (VAD) and online clustering of the
time-difference of arrival (TDOA) information. First, time frames τ ,
where no speaker is active (and noise may exist), are removed with a
VAD. Then the remaining time frames τ , where speakers are active,
are classified into the target period and the interference period with
online clustering.

Step1: Voice activity detection (VAD)
First, we detect the noise-only period PN ⊂ Pk

I by using the
VAD proposed by Sohn et al [11]. The noise-only period PN and
the speech-exist period PS are determined by the ML based decision
rule:

if Λ(τ) > η then τ ∈ PS

else τ ∈ PN
(11)

where

Λ(τ) =

(T−1)fs/TX

f=0

{γ(f, τ)− log γ(f, τ)− 1},

γ(f, τ) = ||x(f, τ)||2/σ(f, τ) is a posteriori SNR, σ(f, τ) is an
estimated noise variance, and η is a threshold [11].

Step2: Feature extraction
As the speech-exist period PS = P − PN includes the target

source and other interferences, it should be classified into target pe-
riod Pk

T and interference period. These periods are determined in
steps 2 and 3.

In order to classify the target (k-th signal) and interferences, we
utilize the time differences of arrival (TDOA) at sensors j and j′.
TDOA q′jj′(τ) can be estimated by using the generalized cross cor-
relation method with the phase transform (GCC-PHAT) [12]

q′jj′(τ) = argmaxq′
X

f

xj(f, τ)x
∗
j′(f, τ)

|xj(f, τ)x∗j′(f, τ)|
ej2πfq

′
. (12)

We can use a TDOA (column) vector q′(τ), which consists of the
q′jj′(τ) of all the sensor pairs for the clustering. Instead, we utilized
the direction of arrival (DOA) vector q(τ) [13]. When the source az-
imuth is θ(τ) and the elevation is φ(τ), the DOA vector can be writ-
ten as q(τ) = [cos θ(τ) cosφ(τ), sin θ(τ) cosφ(τ), sinφ(τ)]T .
The DOA vector q(τ) is calculated by the TDOA information q′(τ)
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Fig. 2. Room setup. The reverberation time was around 350 ms..

and the given sensor coordinate information D [13]:

q(τ) = cD−q′(τ). (13)

where c is the propagation velocity of the signals and − denotes the
Moore-Penrose pseudo-inverse.

Step3: Clustering
To divide PS into the target period Pk

T and interference period,
we then perform clustering for the extracted features q(τ) of all
time-frame τ ∈ PS . As we do not know the number of sources N
to be separated, we employ the online clustering algorithm (leader-
follower clustering) [14].

Let us select the clusters which have enough elements, and name
one of them Ck. Now we set the target period Pk

T as

τ ∈ Pk
T if q(τ) ∈ Ck. (14)

Finally the interference-and-noise-only period Pk
I is determined as

Pk
I = P − Pk

T . (15)

Method summary
1. Estimate noise-only period PN and speech-exist period PS

with VAD.
2. Calculate the feature q(τ) for each frame τ .
3. For each k (k = 1, · · · , N ),

1) Determine the target period Pk
T from PS with (14).

2) Decide the interference-and-noise-only periodPk
I with (15).

3) Calculate a MaxSNR beamformer wk (7) with Pk
I and Pk

T .
4) Compensate the beamformer gain with (10).
5) Calculate the output with (4).

There may be many options with respect to the decision for Pk
T

and Pk
I . For example, in this paper, we defined Pk

T and Pk
I for every

time frame τ . We can also determine these periods for every time-
frequency (f, τ) by using the VAD (11) and DOA vector (13) at each
time-frequency point. Such an option may work well when speech
signals often overlap.

3. EXPERIMENTS
3.1. Setup
Experiments were performed in the room shown in Fig. 2 whose re-
verberation time was around 350 ms. DOAs θ for sources 1, 2 and 3
were −40◦, −120◦ and 60◦, respectively. Simulated meeting ob-
servations were made by following (1) with the impulse responses
hjk(l) and the noise nj(t)measured in the room, and English speech
sources sk(t) sampled at 16 kHz. The active time for each source
in the simulation is shown in Fig. 3. We utilized the recorded noise

from the projector, the personal computers PC1 and PC2 (see Fig. 2).
We also tried a recorded meeting in the room shown in Fig. 2. Dur-
ing the recording, source 1 was standing, and sources 2 and 3 were
sitting. As it was a real meeting, the sources moved. The frame size
T for STFT was 2048 (128 ms), and the frame shift was 256 (16 ms).

3.2. Evaluation measures

The signal-to-interference plus noise-ratio (SINR) was calculated by

SINRi = 10 log10

P
t |yii(t)|2P

t |
P

k �=i yik(t) + yn(t)|2
[dB], (16)

where yik(t) is the sk component that appears at output yi(t): yi(t) =PN
k=1 yik(t), and yn(t) the noise output: yn = IFFT

ˆ
wH

i (f)n(f, t)
˜
.

The sound quality was evaluated by the signal to distortion ratio
(SDR):

SDRi = 10 log10

P
t |xJi(t)|2P

t |xJi(t)− βyii(t−Δ)|2 [dB], (17)

where xJk(t) =
P

l hJk(l) sk(t− l), β and Δ are parameters used
to compensate for the amplitude and phase difference between xJi
and yii. In the simulation, we tried six speaker combinations and
averaged all the results.

3.3. Results

In the simulation, there were overlaps between speakers as shown in
Fig. 3, and Fig. 4. Figure 5 illustrates the estimated DOA θ(τ) for
the speech-exist period PS (black dots) and noise-only period PN

(gray dots). The estimation succeeded for most of the periods, how-
ever, the VAD sometimes failed the noise-only period PN estima-
tion. Moreover, since we employed GCC, we can estimate only one
DOA at each frame τ even when speech signals overlapped. How-
ever, we can separate each signal successfully as shown in Fig. 5 and
Table 1. We can say that, for designing the MaxSNR beamformer,
the target period Pk

T and the interference-and-noise-only period Pk
I

estimation does not have to be so accurate.

Figure 7 shows the effect of the scaling method (10). (a) is the
signal spectrum for a source s1 of one second and (b) is that for a
separated signal y1 without scaling. Without scaling, the spectrum
(b) is severely distorted. This is why the SDR was poor without
scaling (see SDR’ in Table 1). With the scaling method, we can
restore the spectrum to that of speech (Fig. 7(c)).

We also tried to separate the signals for a recorded meeting. The
top of Fig. 9 shows one of the observations x1. There was heavy
noise and speeches sometimes overlapped. Figure 8 illustrates the
estimated DOA θ(τ) for the speech-exist period PS (black dots) and
noise-only period PN (gray dots). Because this is a real recording,
the source 3 (θ ≈ −40◦) was moving. As we cannot calculate SINR
and SDR for a real recording, we checked the output waveforms (in
Fig. 9). We can see that each speech was extracted successfully.

4. CONCLUSION

We proposed a method for extracting speech from a meeting record-
ing with the MaxSNR beamformer. We also proposed a method for
the target active/silence period estimation with a VAD and TDOA
clustering, and the scaling compensation method for the MaxSNR
beamformer. We confirmed that our proposed method works well
for a meeting situation. In this paper, the method was applied to
the whole 30-second long observations, that is, it worked in a batch
mode. However, the results with our method, which includes the on-
line clustering, encourage us to implement this approach in real-time
configuration.
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Fig. 3. True speech active periods for the simulated meeting.
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Fig. 4. Original signals and a mixture x1 in the simulated meeting.

0 5 10 15 20 25 30

100

0

100

time (sec.)

D
O

A
 [d

eg
.]

Fig. 5. Estimated DOA for speech-exist period (black) and noise-only
period (gray) for the simulated meeting.
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Fig. 6. Separated signals in the simulated meeting.

Table 1. Simulation results. SDR’: without scaling solver (10).

SINR[dB] SDR[dB] SDR’[dB]

9.1 12.9 3.8
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