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ABSTRACT

Elastic graph matching is one of the most well known tech-
niques for frontal face recognition/verification and one of the
few techniques that can be combined successfully with fully
automatic face localization and alignment methods. In this
paper, we propose an algorithm for finding the most discrimi-
nant features upon a person's face and a person-specific graph
is placed in the spatial coordinates that correspond to these
discriminant features. We illustrate the improvements in per-
formance by applying the proposed method in frontal face
verification using the XM2VTS database.

Index Terms- Elastic graph matching, expandable graphs,
linear discriminant analysis, frontal face verification.

1. INTRODUCTION

A popular class of techniques used for frontal face verifica-
tion is elastic graph matching. In EGM the reference object
graph is created by projecting the object's image onto a rect-
angular elastic sparse graph where a Gabor wavelet bank re-
sponse is measured at each node. The graph matching process
is implemented by a coarse-to-fine stochastic optimization of
a cost function which takes into account both jet similarities
and node deformation [1, 2].

A variant of the standard EGM, the so-called morpholog-
ical elastic graph matching (MEGM), has been proposed for
frontal face verification [2]. In MEGM the Gabor analysis
has been superseded by multiscale morphological dilation-
erosion using a scaled structuring function [2]. Discriminant
techniques have been employed in order to enhance the recog-
nition and verification performance of the EGM. The use of
linear discriminating techniques at the feature vectors for se-
lecting the most discriminating features has been proposed in
[1, 2]. Several schemes that aim at weighting the graph nodes
according to their discriminatory power have been proposed
[2,3].

This work has been partially funded by the integrated project BioSec
IST-2002-001766 (Biometric Security, http://www.biosec.org), and by the
network of excellence BioSecure IST-2002-507634 (Biometrics for Secure
Authentication, http://www.biosecure.info), both under Information Society
Technologies (IST) priority of the 6th Framework Programme of the Euro-
pean Community.

Little or no research has been conducted concerning what
type of graphs are more appropriate for face verification. The
sparse graph that has been used for face representation in the
literature is: either an evenly distributed graph placed over a
rectangular image region [1, 2, 3], or a graph that is placed
on preselected nodes that correspond to some fiducial facial
landmarks (e.g., nose, eyes, etc.).

Intuitively, one may think that graphs with nodes placed at
specified fiducial points may perform better. However, such
graphs are more difficult to be applied automatically, since
they require a detection module to find the precise coordi-
nates ofthe facial features in the reference images or, in many
cases, manual feature selection [4] is applied. On the contrary,
an evenly distributed rectangular graph is easier to be handled
automatically, since only a face detection algorithm is needed
in order to find an initial approximation of the rectangular fa-
cial region [1, 2, 3].

In this paper we advance the research in EGM for frontal
face verification by proposing the use ofperson-specific graphs
placed at the person's discriminant facial landmarks. To do
so, we introduce a heuristic cost optimization algorithm, which
has as outcome the graph that optimizes a preselected dis-
criminant cost. The cost is formed by calculating the sig-
nificance of each node using discriminant measures like the
ones proposed in [1, 2]. We assume that nodes with high dis-
criminant measures correspond to facial landmarks with high
discriminant capability. Then, we try to represent in a better
way the corresponding neighborhood by adding more nodes
around the original one. This practically means that we ex-
pand the nodes that are considered as discriminant. This way,
graphs that are person specific and have nodes placed at dis-
criminant facial features, are obtained. The proposed method-
ologies can be applied to all EGM algorithms.

2. ELASTIC GRAPH MATCHING

In this Section we will briefly outline the EGM algorithm. In
the first step of the EGM algorithm, a sparse graph that is
suitable for face representation is selected [1, 2, 4]. The fa-
cial image region is analyzed and a set of local descriptors is
extracted at each graph node. Analysis is usually performed
by building an information pyramid using scale-space tech-
niques. In the standard EGM, a 2D Gabor based filter bank
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has been used for image analysis. The output of multiscale
morphological dilation-erosion operations at several scales is
a nonlinear alternative ofthe Gabor filters for multiscale anal-
ysis and has been successfully used for facial image analysis
[2]. At each graph node that is located at image coordinates
x, a jet (feature vector) j (x) is formed:

j(x) = [fi(x), . ,fM(x) (1)

where fi (x) denotes the output of a local operator applied to
the image f at the i-th scale or at the i-th pair (scale, ori-
entation) and M is the jet dimensionality. The next step of
EGM is to translate and deform the reference graph on the test
image in order to find the correspondences of the reference
graph nodes on the test image. This is accomplished by mini-
mizing a cost function that employs node jet similarities and,
in the same time preserves, the node neighborhood relation-
ships. Let the subscripts t and r denote a test and a reference
facial image (or graph), respectively. The L2 norm between
the feature vectors at the l-th graph node of the reference and
the test graph is used as a similarity measure between jets,
i.e.:

Cf(j (xl),j(xl)) J (Xl) j(Xl) (2)
Let V be the set of all graph vertices of a certain facial

image. For the rectangular graphs, all nodes, expect from the
boundary nodes, have exactly four connected nodes. Let XH (l)
be the four-connected neighborhood of node 1. In order to
quantify the node neighborhood relationships using a metric,
the local node deformation is used:

Cd(Xt, Xl ) = E |(Xt' -Xl))-(X' - X()|- (3)

The objective is to find a set of vertices {xl (r), I c V} in
the test image that minimizes the cost function:

C({xl}) Z{Cf(j(x'),j(xl)) + ACd(Xl,Xl )}. (4)
IEV

The jet ofthe l-th node that has been produced after the match-
ing procedure of the graph of the reference person r in the
image of the test person t, is denoted as j (xl (r)). This no-
tation is used due to the fact that different reference graphs r
result to different test jets j(xl (r)). Thus, the jet of the l-th
node of the test graph t is a function of the reference graph
r. The notation j (xl ) is used only when the l-th node is in a
preselected position of a facial image.

In [2], the optimization of (4) has been interpreted as a
simulated annealing with additional penalties imposed by the
graph deformations. Accordingly, (4) can be simplified to the
minimization of:

DtT(r) = El, v{Cf (j(x),j(x1 ))} subject to (5
xi = Xi + s + 6l, 61 <3 max,

where s is a global translation of the graph and 61 denotes a
local perturbation of the graph nodes. The choices of A in (4)
and 3max in (5) control the rigidity/plasticity ofthe graph [1],
[2].

3. FINDING DISCRIMINANT PERSON-SPECIFIC
GRAPHS

3.1. Setting the Optimization Problem

Let El (r) and 1:4(r) be the sets of the jets of the l-th node
that correspond to genuine and impostor claims related to per-
son r, respectively. Let also, m(X) be the mean vector of a
set of vectors X and N(X) be its cardinality. In order to
define the similarity of a test jet j (xl (r)) with the class of
reference jets for the same node, we use the following norm
[2]:

s't (r) = lj(xt1 (r)) -m(Fc(0)) (6)
Let Yb(r) and Y' (r) be the sets of local similarity values

sl (r) that correspond to genuine and impostor claims, respec-
tively. A possible measure for the discriminant power of the
l-th node is the following:

Pl (T.) I

y )El()l()S r

N(Y 1 (r)) Es
' (r)cY ' (r) St (T.)

(7)

The measure (7) increases when the impostor local similarity
measures for the graph node are high and/or the local similar-
ity measures for the genuine class are small.

By summing the discriminant coefficients for a certain
graph setup we have:

IL
Eg(r) = L EPl(r)

1=1

(8)

where L is the total number of nodes. This is the mean of all
the discriminant ratios and is a characteristic measure for a
particular graph setup of some reference person r. The mea-
sure defined in (8) creates an ordering relationship between
graphs. That is, for two graphs g1 and 92 and for some refer-
ence person r if Eg (r) < E92 (r) the graph 92 is considered
more discriminant than the graph g1. Practically, the nodes of
the graph 92 are placed in more discriminant facial landmarks
than the nodes of g1. Figure 1 shows two different graph se-
tups g1 and 92 with different values for the measure Eg(r).
Both graphs have 64 nodes. The graph depicted in the right
hand side of Figure 1 is found experimentally to be more dis-
criminant than the rectangular graph depicted in left hand side
of the Figure 1 since Eg (r) < E92 (r).

The previous analysis leads to an optimization procedure
in order to find the graph g that has maximum Eg (r). The de-
sired properties (constraints) ofthe graph g apart from having
maximum Eg (r) are:

* The graph should have a relatively small number of
nodes in order to have low computational cost for the
elastic graph matching procedure.

* The nodes should not be very close to each other in
order to avoid redundant use of the same discriminant
information.
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Fig. 1. The reference facial images with the reference graphs and the corresponding graph with nodes placed at his discriminant
facial landmarks.

Formally, the above optimization problem can be written as:

g = arg max9 E, (r) subject to
x i- > A,V l,j nodes with 1 4j

L = constant
(9)

where A is a preselected threshold that controls the density of
the graph.

3.2. A Heuristic Optimization Approach

In order to solve the maximization problem (9), someone has
to follow a heuristic optimization approach since, exhaustive
search is not feasible. Thus, we should search for a sub-
optimal solution of the constraint optimization problem (9)
by assuming that the desired graph is a subgraph of the most
dense A-rectangular graph (i.e., an evenly distributed graph
with nodes placed every A pixels).

Moreover, it is also very computational expensive to com-
pute the discriminant measures ofthe nodes ofthe most dense
A-rectangular graph (e.g., the most dense 9-rectangular graph
for the facial images in Figure 1 has 700 nodes). Thus, a sec-
ond sampling step is required. In the second sampling step, a
sparse subgraph of the dense rectangular graph is selected as
the starting point of the optimization procedure. A possible
solution for the initial sampling of the most dense rectangu-
lar graph is the evenly distributed rectangular graph with a
total of L nodes. A solution for selecting the initial position
of the sparse graph could be a selection based on a face de-
tection/localization algorithm. These sampling steps are in-
evitable in order to have a computational feasible solution of
the constrained optimization problem (9).

In the following, the steps of the proposed heuristic al-
gorithm are described in more detail. This procedure should
be repeated for every reference person r in the database. Be-
fore starting the optimization procedure the reference graphs
for the person r should be created. The reference graphs are
created by overlaying a rectangular sparse graph on the facial
image region in the positions indicated by a face localization
algorithm. The first three images of Figure 1 show the refer-

I Expand Node_ C

New node

I

Fig. 2. Expanding the rectangular graph.

ence facial images with the corresponding graphs for a person
in the XM2VTS database.

Let the initial graph contain L vertices at the first iteration
i 1. Let 13i be the set of graph vertices at the i-th iteration.

Step 1 . Take the reference graphs and match them in all
genuine and impostor images.

Step 2 For each node I measure p1 (r).

Step 3 Select a subset of the nodes with the higher dis-
criminant value that have not been already expanded
and expand them. The nodes that lie in the perimeter of
the graph can be expanded only inside the facial region.
Figure 2 describes pictorially this step.

Step 4 . Verify that the inserted nodes do not violate the
graph sparseness criterion. That is, erase the new nodes
that violate the criterion x < A, V 1, j neigh-
boring nodes. The set of the final inserted nodes in the
i-th iteration is denoted as Ai.
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Configuration I
Evaluation set Test set

FAE=FRE FRE =0 FAE=0 Total Error Rate(TER)
Algorithm FAE=FRE FAE(FRE=0) FRE(FAE=0) FA FR FA FR FA FR FAE=FRE FRE=0 FAE=0
EGM 9.2 98.2 65.0 7.9 5.0 98.8 0.0 0.0 61.0 12.9 98.8 61.0

EGM-FD 2.5 29.9 55.3 2.5 3.2 11.2 0.2 0.2 14.7 5.7 11.4 14.9
E-EGM 3.4 34.5 55.5 | 3.3 2.75 22.7 0.0 0.0 44.7 6.05 22.7 44.7

E-EGM-FD 1.2 14.2 24.5 1.93 1.0 11.0 0.0 0.0 10.7 2.93 11.0 10.7

Table 1. Error Rates for XM2VTS Configuration I

Step 5 . Match locally the nodes of Ai in all the genuine and
impostor facial images. Let k c Ai be an inserted node
and xk be the initial coordinate vector for the node k
in a test image t. The local matching procedure is the
outcome of the local searching:

xk(r) = arg minXk Cf (j(x),j(x)) subject to
Illx < cmax

(10)
and x(K) is the final coordinate vector that gives the
jet j(x(r))

Step 6 . For each node k c Ai calculate its discriminant
value pk (r).

Step 7 . Let Ci = Ai U Bi. Order the nodes in Ci according
to their discriminant power and obtain a graph gi+l by
keeping only the L nodes with the highest discriminant
power. The set Bi+1 contains the nodes of gi+1.

Step 8 .If (Eg+, (r) -Eg (r)) > T then i <- i+1 and goto
Step 4 else stop.

Using as reference the facial images and graphs depicted
in Figure 1, we demonstrate, in Figure 1, the discriminant
graph that is derived from the proposed procedure. As it can
be seen in this Figure 1 (right hand image), the nodes of the
discriminant graph are concentrated in the areas between his
cheeks and nose. This region is indeed characteristic for this
particular person in the XM2VTS database. The elastic graph
matching procedure ofthe new graphs is performed using the
minimization procedure indicated in the optimization prob-
lem (5).

4. EXPERIMENTAL RESULTS

The experiments were conducted in the XM2VTS database
using the Configuration I protocol described in [5]. A 8 x 8
graph and a modified morphological analysis was used. The
scores achieved during the testing procedure are summarized
in Table 1 (the abbreviations will be explained below).

The EGM using rectangular graphs has given an TER
equal to 12.9% in the test set of Configuration I. The best

TER achieved for the rectangular graphs, using the feature
vector discriminant analysis in [2], was 5.7%. The step of
the discriminant feature selection in the rectangular graphs is
denoted as EGM-FD (feature discriminant), in Table 1.

The procedure for finding discriminant person specific graphs,
described in Section 3.2, without feature vector discriminant
analysis, is abbreviated as expandable-EGM (E-EGM) in Ta-
ble 1. When replacing the rectangular evenly distributed graphs
with the person specific discriminant graphs proposed in this
paper, the TER has been measured at 6.05%.When using fea-
ture vector discriminant analysis at the nodes of the discrimi-
nant graph structures an TER= 2.9% has been achieved. This
approach is abbreviated as E-EGM-FD, in Table 1. That is,
an increase in performance more that 50% in terms of TER
is achieved when using the proposed graphs in comparison to
the EGM approach that uses rectangular graphs.

5. CONCLUSION

A novel method that finds discriminant graph structures have
been proposed. The discriminant graph structures are used
along with morphological elastic graph matching and tested
for frontal face verification where the verification performance
ofEGM is greatly enhanced.
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