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ABSTRACT
We address the problem of minimum mean-squared error (MMSE)
estimation under convex constraints. The familiar orthogonality
principle, developed for linear constraints, is generalized to include
convex restrictions. Using the extended principle, we study two
types of convex constraints: constraints on the estimated vector (e.g.
bounded norm), and constraints on the structure of the estimator (e.g.
�lter with bounded coef�cients). It is shown that in both cases there
exists a simple closed form expression for the constrained MMSE
estimator. As an application of our approach, we develop Wiener
type �lters under certain restrictions, which allow for practical im-
plementations.

Index Terms� Constrained estimation, Constrained Wiener �l-
tering

1. INTRODUCTION

A common problem in Bayesian estimation is to obtain an estimate
of a random vector (r.v.) x 2 X based on a realization of another r.v.
y 2 Y such that some error criterion is minimized [3]. The estima-
tor � (�) assigns an estimated vector bx 2 X to every possible real-
ization of y. Thus, the Bayesian estimation problem is essentially a
problem of constructing a mapping from the space of measurement
vectors Y to the space of signals X based on the joint probability
function of x and y. One of the most commonly used error criteria is
the mean-squared error (MSE), which is given by the expectation of
the l2-norm of the error E[kx� � (y)k22]. It is well known that the
estimator minimizing the MSE is �0 (y) = E[xjy], the conditional
expectation of x given y. This estimator, although seemingly sim-
ple, is not frequently used due to two main reasons. First, in many
cases it is very hard to obtain an expression for �0, and second, one
often desires to constrain the estimator to belong to a certain class of
mappings because of implementation reasons. For example, when x
and y are two discrete-time random processes, it may be desirable to
constrain the estimator to be a causal �lter with bounded coef�cients
rather than a general non-linear, non-causal function of the series
fy [n]g. The need to pose restrictions on the estimator arises also
when there is poor knowledge of the distribution of x and y, which
may lead to an unfeasible estimate. For example,when estimating an
image, one may want to restrict the pixel values to be positive.

Solutions to various constrained estimation problems appear in
the signal processing literature, starting from the famous work of
Wiener [4] on linear minimum MSE (MMSE) estimation and pre-
diction of signals, and ranging to �nite impulse response (FIR) �l-
tering [5], �nite horizon and more. All these problems possess a
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common structure - the constraint on the estimator is linear. Lin-
ear constraints are well treated using the orthogonality principle, or,
more generally, via the concept of conditional expectation in the
wide sense [3]. However, there seems to be no unifying approach
to solving MMSE estimation problems under general convex con-
straints.

In this paper we extend the well known orthogonality principle
to the case of convex constraints on the estimator. We then study
two types of convex restrictions: constraints on the estimated vec-
tor bx, and constraints on the structure of the estimator � (�). We
show that in the �rst case, the solution is simply the projection of the
MMSE estimate onto the set of constraints. In the later case, the es-
timator can be obtained from the MMSE estimator using a weighted
projection. To demonstrate the approach, we show how certain re-
strictions can be imposed on the Wiener �lter in order to allow for
practical implementations. Speci�cally, we derive the MMSE �lter
under bounded norm and bounded coef�cient constraints.

2. NOTATION AND MATHEMATICAL PRELIMINARIES

Calligraphic letters are used to denote vector spaces, subspaces and
sets of vectors. The Moore-Penrose pseudo-inverse of a matrix A is
denoted by Ay and the Hermitian conjugate is A�. The j'th compo-
nent of a vector v is denoted (v)j and the (i; j) entry in the matrix
A is denoted (A)i;j . A positive (semi) de�nite operator is written as
A �(�) 0. Brackets are used for discrete time signals and capital let-
ters for Fourier transforms (e.g. Z (!) = F fz [n]g). Expectation is
denoted by E [�] and conditional expectation is written as E [�j�]. An
inner product on a vector space is denoted by h�; �i. The associated
norm is de�ned by kxk =

p
hx; xi. A G-weighted inner product,

where G � 0, is de�ned as hx;Gyi.
A projection operator onto a closed and convex setA in a Hilbert

spaceH is denoted by PA (�) and de�ned as

PA (h) = argmin
a2A

kh� ak . (1)

It can be shown that PA (h) 2 A is the projection of h ontoA if and
only if [1]

Re fhh� PA (h) ; PA (h)� aig � 0, 8a 2 A. (2)

Since PA (�) depends on the inner product onH, we use the notation
P
(G)
A (�) to denote a projection with respect to a G-weighted inner
product, which we refer to as theG-weighted projection ontoA. We
note that P (G)A (h) is well de�ned even when G � 0, as long as the
vector h is orthogonal to the null-space of G.

Projections onto subspaces can be expressed in terms of frames.
A set of vectors fhng in a Hilbert space H is called a frame for a



subspace A if there exist constants 0 < A � B <1 such that

A kak2 �
X
n

jha; hnij2 � B kak2 , 8a 2 A. (3)

The projection of h 2 H ontoA can be written as a linear combina-
tion of the frame vectors PA (h) =

P
k (a)k hk, where the (possibly

in�nite) vector of coef�cients a can be chosen as [2]:

a = Gyv (4)

with matrix G and vector v de�ned by

(G)j;k = hhk; hji , (v)j = hh; hji . (5)

In our Bayesian estimation setup, the space of measurement vec-
tors is denoted by Y and the space of signals is denoted by X (e.g.
Rm and Rn). Throughout the paper, it is assumed thatX is a Hilbert
space with inner product h�; �iX and associated norm k�kX . The
MSE of an estimator � (y) is de�ned as E

�
kx� � (y)k2X

�
.

3. EXTENDED ORTHOGONALITY PRINCIPLE

The theory of MMSE estimation under linear constraints is well
established via the concept of conditional expectation in the wide
sense [3]. In this section we give a brief overview of the basic
ideas underlying this theory and then extend it to general convex
constraints.

Let (
; F; P ) be a probability space of r.v.'s taking values
in X . The set of all �nite variance r.v.'s is denoted by L2 =�
x : E

�
kxk2X

�
<1

	
. An inner product on L2 is de�ned by

hu; viL2 = E
�
hu; viX

�
. It can be shown that L2 is a Hilbert space

given that two r.v.'s u,v are considered identical if u = v with prob-
ability 1 (w.p.1).

Let HY be the subspace of L2 generated by applying all (Borel
measurable) operators from Y to X on the r.v. y:

HY =
�
� (y) j � : Y ! X , E

�
k� (y)k2X

�
<1

	
. (6)

The set HY is the set of r.v.'s in L2 that can constitute an estimate
for x based on y. The conditional expectation of x given y is the pro-
jection of x onto the subspace HY and is denoted by bx0 = E [xjy].
Clearly, the r.v. bx0 is the MMSE estimate of x given y since it min-
imizes the distance kx� bx0k2L2 , which is equivalent to minimizing
the MSE, E

�
kx� bx0k2X �.

When one restricts the search for the MMSE estimator to a cer-
tain family of operators, the set of candidate r.v.'s is narrowed down
to a subset A � HY . In the special case where A is a closed sub-
space of HY , the MMSE estimate bxA among all r.v.'s in A, is the
orthogonal projection of x onto A and is termed the conditional ex-
pectation in the wide sense of x given A. Restrictions of this type
are referred to herein as linear constraints.

The most famous example of a linear constraint is the restriction
that � (�) be a linear operator. In this case A is the subspace of r.v.'s
formed by applying all linear transformations to the measurement
vector y and the conditional expectation in the wide sense of x given
A is the familiar linear MMSE (LMMSE) estimator.

From the properties of projections in Hilbert spaces one immedi-
ately obtains the following characterization of the MMSE estimator
under a linear constraint, known as the orthogonality principle. Sup-
pose that A is a closed subspace ofHY . Then �A (y) is the MMSE
estimator of x among all r.v.'s in A if and only if

E
�
hx� �A (y) ; � (y)iX

�
= 0, 8� (y) 2 A. (7)

Thus, the error x � �A (y) using the optimal estimator in A has to
be orthogonal to any other estimator in A. For example, if A is the
subspace in HY of all the linear operators from Y to X , then the
error of �A (y), which is the LMMSE estimator, is orthogonal to
every linear transformation of the measurement vector y.

The orthogonality principle can be employed to solve a variety
of constrained estimation problems in which the constraint is linear.
For example, in the Wiener �ltering setting, restricting the �lter to
be causal, FIR of order N , or any other restriction on the support of
the �lter are all linear constraints as they all correspond to subspaces
of HY . However, an amplitude constraint such as jh [n]j � " is
nonlinear and cannot be treated by the same procedure

In the following theorem, we extend the orthogonality principle
to nonlinear constraints that are closed convex sets inHY .

Theorem 1 Let A be a closed convex set in the space of r.v.'s HY .
Then �A (y) 2 A is the MMSE estimator in A if and only if

Re
�
E
�
hx� �A (y) ; �A (y)� � (y)iX

�	
� 0, 8� (y) 2 A.

(8)

Proof. Follows immediately from (2).
Note that in contrast to the orthogonality principle, condition (8)

is an inequality and therefore does not lead to an equation, whose
solution is the MMSE estimator in A. Nevertheless, there are cases
in which (8) leads to a simple scheme for obtaining the constrained
MMSE estimator, as discussed in the following sections.

4. CONSTRAINTS ON THE ESTIMATED VECTOR

Consider the problem of MMSE estimation under a constraint on the
estimated vector bx. Speci�cally, we are interested in the case wherebx is constrained to lie in a given closed convex set W � X . This
type of constraints includes, for example, restricting the norm of the
vector bx to be bounded by a given value " or imposing that (bx)i � 0.
From the viewpoint of the estimator � (�), we con�ne ourselves to
operators whose image is contained in W , i.e. we consider only
r.v.'s in the set A =

�
� (y) j � : Y ! W , E

�
k� (y)k2X

�
<1

	
.

Clearly, A is a closed convex set in HY . Therefore, using (8) we
obtain the following.

Theorem 2 LetW be a closed convex set in the space of signals X ,
and let A be the set of r.v.'s inHY that take values only inW . Then
the MMSE estimator in A is

�A (y) = PW (E [xjy]) . (9)

Proof. Plugging (9) in (8) and using the smoothing property, we get

Re
�
E
�
hx� PW (E [xjy]) ; PW (E [xjy])� � (y)iX

�	
= Re

�
E
�
E
�
hx� PW (E [xjy]) ; PW (E [xjy])� � (y)iX

�
jy
�	

= Re
�
E
�
hE [xjy]� PW (E [xjy]) ; PW (E [xjy])� � (y)iX

�	
.

Now, since � (y) 2 W for every y, we conclude from (2) that the
real part of the inner product is non-negative for every y. After taking
the expectation over y, the real-part remains positive and hence (8)
is satis�ed.

Theorem 2 states that the estimation scheme consists of project-
ing the optimal estimate bx0 = E [xjy] onto the setW . This intuitive
result can be used to obtain the optimal estimate of x with bounded
energy, bounded components, or in a subspace of X . For example,



let x 2 Rm and y 2 Rn. Then using (9), the MMSE estimate of x
with l2-norm bounded by a given value ", is simply

bx = � bx0 kbx0k2 � "
"bx0
kbx0k2 kbx0k2 > ". (10)

Similarly, the optimal estimate whose components satisfy
��(bx)i�� �

"i, for some given set of non-negative scalars f"ig, is bx = f" (bx0),
where f" (�) is the component-wise clipping function given by

(f" (x))i =

8<: (x)i
��(x)i�� � "i

"i (x)i > "i
�"i (x)i < �"i.

(11)

Finally, the optimal estimate in a subspaceW � Rm isbx = PWbx0 (12)

where PW is them�m projection matrix ontoW .

5. STRUCTURAL CONSTRAINTS ON THE ESTIMATOR

We now consider the case in which the structure of the estimator is
constrained to be of a certain form. Speci�cally, we design an esti-
mator possessing the form of a linear combination of operators with
certain convex constraints on the coef�cients of the combination.

Suppose that one desires an estimator of the type

� (y) =
P
k

(a)k �k (y) (13)

where f�kg are a set of given operators from Y to X . If the r.v.'s
f�k (y)g form a frame for a subspace A � HY , and no further re-
striction is posed on the coef�cient vector a, then the MMSE esti-
mator in A is obtained by using the vector (4):

a0 = G
yv (14)

where the matrix G and vector v in (5) are given, in our case, by

(G)j;k = E
h

�k (y) ; �j (y)

�
X

i
, (v)j = E

h

x; �j (y)

�
X

i
.

(15)
This is the familiar LMMSE estimator of x given the r.v.'s f�k (y)g.

In many cases, the matrix G is close to singular, causing the co-
ef�cients of the linear combination to attain very large values. Such
an effect is usually undesired in practical implementations. Hence,
we are interested in the case where the vector a is constrained to lie
in a closed convex setW � l2. This, for example, includes seeking a
representation with bounded coef�cients. Interestingly, the solution
to this constrained estimation problem, as in (9), amounts to apply-
ing a certain transformation to the unconstrained coef�cient vector
a0 in (14), as described in the following theorem.

Theorem 3 Let f�k (y)g be a set of r.v.'s that form a frame for a
subspace inHY , and letW be a closed convex set in l2. Then among
all the estimators of the form � (y) =

P
k (a)k �k (y) with a 2 W ,

the coef�cient vector that minimizes the MSE is aW = P
(G)
W (a0),

with G and a0 given in (15) and (14) respectively.

The proof of the theorem relies on condition (8) and is omitted
due to lack of space.

Note that in contrast to the case of constraints on the esti-
mated vector (9), here the relation between the unconstrained and
constrained coef�cients is not a simple projection but rather a G-
weighted projection. The methods coincide only if f�k (y)g are un-
correlated r.v.'s with equal variance, in which case G = �2I .

We now present some examples of Theorem 3.

5.1. A Quadratic constraint

Consider the family of estimators of the form (13) where the coef�-
cients are constrained to have bounded weighted norm:

a�Wa � " (16)

where " > 0 and W is a positive de�nite matrix such that W�1 is
bounded. From Theorem 3, the optimal set of coef�cients under this
constraint is

a = (G+ �W )yGa0 (17)
where � � 0 is the minimal value for which (16) holds.

We see that imposing a quadratic constraint amounts to adding a
regularization term to the matrix G in (14) (as Ga0 can be replaced
by v). An example of the use of (17) is given in Section 6 in the
context of Wiener �ltering.

5.2. An l1 Constraint

Suppose that the matrix G is not singular and that it can be factored
as G = UU�. We wish to obtain an estimator of the form (13) with
a coef�cient vector a, whose coordinates along the columns fUig of
U are bounded by a given set of non-negative scalars f"ig:

jhUi; aij � "i (18)

From Theorem 3, the optimal coef�cient vector is

a = (U�)
�1
f" (U

�a0) (19)

where f" (�) is the component-wise clipping function (11).
It can be seen that in contrast to (17), this constraint causes the

coef�cient vector a to be a non-linear function of a0. In Section 6
we use (19) to impose certain restrictions on the coef�cients of the
Wiener �lter.

6. CONSTRAINEDWIENER FILTER

One of the most widely used applications of MSE estimation in the
�eld of signal processing is the Wiener �lter. The discrete version of
the optimal �ltering problem is the following. Given a wide sense
stationary (WSS) signal y [n], produce an estimate bx [n] of the signal
x [n] such that the MSE E[jx [n]� bx [n]j2] is minimized. The opti-
mal linear estimator happens to be also time invariant and is known
as the Wiener �lter [4]. In this section we point out some possi-
ble drawbacks of the Wiener solution, and derive an expression for
the MMSE �lter under certain constraints which allow for practical
implementations.

In order to derive an expression for a constrained Wiener �lter,
we �rst develop the unconstrainedWiener solution within our frame-
work. Our problem is to design a �lter hm0 [n] that minimizes the
MSE at a certain time instancem0, thus

bx [m0] =

1X
k=�1

hm0 [k] y [m0 � k] . (20)

Comparing (20) with (13) we see that they are of the same form with
the random variables fy [m0 � k]g playing the role of the random
vectors f�k (y)g. Using (3) it can be shown that fy [m0 � k]g form
a frame for a subspace in HY if and only if there exist constants
0 < A � B <1 such that the spectrum of y [n] satis�es

A � Syy (!) � B, ! 2 
u (21)



where 
u , f!jSyy (!) 6= 0g.
To �nd hm0 [n], the matrix form in (14) is used, with v and G

given by (15):

(v)j = E [x [m0] y [m0 � j]] = Rxy [j] , (22)
(G)j;k = E [y [m0 � k] y [m0 � j]] = Ryy [j � k] . (23)

Evidently, both v and G are independent of m0. The optimal �lter
is thus also independent of m0 and is given from (4) by h = Gyv,
where the in�nite vector h corresponds to the series fh [n]g.

The matrix G is an in�nite Toeplitz matrix that corresponds to
convolution with Ryy [n] and v is an in�nite vector corresponding
to the series Rxy [n]. Hence, it is easily veri�ed that the frequency
response of the optimal �lterH (!) can be chosen as

H (!) =

(
Sxy(!)

Syy(!)
! 2 
u

0 ! =2 
u.
(24)

If the lower bound in (21) is very small, then there may be fre-
quencies at which Syy (!) is close to zero. This typically causes
the impulse response of the �lter to attain large values and have a
slow decay, properties which may be undesirable in practical imple-
mentations. To overcome these dif�culties, we may impose certain
constraints on the �lter that suppress the magnitude of H (!) or,
alternatively, bound the coef�cients of the �lter h [n] in the time do-
main. Two such constraints are considered in the following sections.

6.1. Wiener �lter with a quadratic constraint

We �rst restrict the norm of the �lter by considering only those �lters
for which Z �

��
jH (!)j2 L (!) d! � " (25)

for some " > 0 and weighting L (!) that satis�es L (!) � C for
some C > 0. Using Parseval's theorem, (25) can be written as
h�Wh � " /2� , whereW is the in�nite Toeplitz matrix de�ned by
(W )m;n , l [m� n]. As can be seen, this is a convex constraint
of the type (16). Thus, the solution of the optimal �ltering problem
under constraint (25) is given by (17):

h = (G+ �W )y v. (26)

The matricesG andW are both in�nite Toeplitz matrices that corre-
spond to convolution with Ryy [n] and l [n] respectively. Therefore,
the quadratically-constrained Wiener �lterH (!) is given by

H (!) =

(
Sxy(!)

Syy(!)+�L(!)
! 2 
c

0 ! =2 
c
(27)

where � � 0 is the minimal value for which (25) holds and 
c ,
f!jSyy (!) + �L (!) 6= 0g. Note that now, even if the lower bound
of Syy (!) is small, we can still ensure thatH (!) does not explode
by choosing a weighting function L (!) that is bounded below by a
larger positive number.

The quadratically-constrained Wiener �lter does not have an ex-
plicit solution in the sense that there is no closed form for �. How-
ever, in practical applications the exact value of " in (25) is usually
not very important as long as the �lter is realizable. Hence the exact
value of � is not crucial but rather the form of the frequency response
is what matters. In cases where the value of " is important, one can
use the bisection algorithm to obtain the optimal �.

An interesting fact is that the quadratically-constrained Wiener
�lter is identical to the unconstrained Wiener solution designed to

estimate x [n] from the measurements ey [n] = y [n] + z [n], where
z [n] is a WSS process with spectrum Szz (!) = �L (!). Hence,
the effect of constraining the �lter to belong to the class de�ned in
(25), can be understood as designing a �lter to estimate x [n] from
a noisy version of the measurements instead of using the measure-
ments themselves.

6.2. Wiener �lter with an l1 constraint

A more intuitive approach for specifying a restriction on the Wiener
�lter is to do so in the time domain. Speci�cally, we seek the MMSE
�lter subject to the constraint:��F�1 fH (!)L� (!)g [n]

�� � " [n] , n 2 Z (28)

where f" [n]gn2Z is a series of non-negative numbers. It turns out
that this problem has a simple solution given that Syy (!) > 0 and
L (!) is a factorization of Syy (!), i.e. the relation L (!)L� (!) =
Syy (!) holds. Note that we do not require spectral factorization
in the sense that l [n] be a causal series, but any decomposition of
Syy (!) into a multiplication of two conjugate functions. For exam-
ple L (!) =

p
Syy (!) is a valid choice. Under these restrictions,

constraint (28) is of the form (18) and thus the solution is given by
(19), which, in our case, reduces to

H (!) =
1

L� (!)
F
�
f"

�
F�1

�
Sxy (!)

L (!)

�
[n]

��
(!) (29)

where f" (�) is the component-wise clipping function (11).
As a special case of (28), we may obtain the causal Wiener �lter.

This is done by setting " [n] = 0 for n < 0 and " [n] ! 1 for
n � 0 and using the spectral factorization L (!) = S� (!) and
L� (!) = S+ (!), where S+ (!) is the Fourier transform of a causal
series. Constraint (28), then, causesH (!)S+ (!) to be causal, and
since S+ (!) is causal, this implies that H (!) is causal as well.
Substituting this speci�c choice of " [n] and L (!) in (29), we get
the known expression for the causal Wiener �lter [4].

Another interesting special case of (28) is the condition���R ���H (!)pSyy (!)d!��� � "0. This constraint can be brought to
the form of (28) by setting " [n]!1 for n 6= 0 and " [0] = "0 /2�
and using L (!) =

p
Syy (!). Substituting these expressions into

(29), the solution is

H (!) =
1p

Syy (!)

 
Sxy (!)p
Syy (!)

� c
!

(30)

where c = max
n

1
2�

����R ��� Sxy (!).pSyy (!) d!���� "0� ; 0o.
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