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ABSTRACT

A significant cost in obtaining acoustic training data is the genera-
tion of accurate transcriptions. For some sources close-caption data
is available. This allows the use oflightly-supervisedtraining tech-
niques. However, for some sources and languages close-caption is
not available. In these casesunsupervisedtraining techniques must
be used. This paper examines the use of unsupervised techniques
for discriminative training. In unsupervised training automatic tran-
scriptions from a recognition system are used for training. As these
transcriptions may be errorful data selection may be useful. Two
forms of selection are described, one to remove non-target language
shows, the other to remove segments with low confidence. Experi-
ments were carried out on a Mandarin transcriptions task. Two types
of test data were considered, Broadcast News (BN) and Broadcast
Conversations (BC). Results show that the gains from unsupervised
discriminative training are highly dependent on the accuracy of the
automatic transcriptions.

Index Terms— Speech Recognition, unsupervised learning

1. INTRODUCTION

For some tasks, such as Broadcast News (BN) transcription, audio
data can be easily collected from radio and television shows. Thus,
it is possible to collect thousands of hours of audio data. However
to build Speech-to-Text (STT) systems, in addition to the audio data,
transcriptions are required. Generating accurate manual transcrip-
tions for this data is highly expensive. For some sources, closed-
captions and television transcripts may be available. These approxi-
mate transcriptions have been successfully used in lightly-supervised
training techniques [1, 2]. However, for some tasks and languages,
approximate transcriptions are not available. To make use of this
audio dataunsupervised trainingtechniques may be used.

Most previous studies of unsupervised training [3, 4, 1, 5] have
examined Maximum Likelihood (ML) estimation techniques and con-
centrated on English BN transcription. These schemes have found
that the use of iterative additions of the data and the use of confidence
scores can yield improvements in performance, especially when lim-
ited amounts of manually generated transcriptions are available. The
majority of state-of-the-art speech recognition systems make use of
discriminative training approaches such as Maximum Mutual In-
formation (MMI) [6] and Minimum Phone Error (MPE) [7]. Re-
cently unsupervised discriminative training has been used with large
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amounts of data [8] for both English and Arabic BN transcription. It
was shown that MMI-based discriminative training could be effec-
tively used. This paper examines in detail the gains and possible lim-
itations of applying unsupervised discriminative training techniques
to Mandarin BN and Broadcast Conversation (BC) transcription.

Discriminative approaches are expected to be more sensitive to
the accuracy of the transcriptions than ML-based approaches. In par-
ticular as the schemes attempt to improve the recognition of the “cor-
rect” sequence from all others, if the “correct” sequence is wrong
then little improvement may be obtained. There is also the issue that
if a STT system is used to generate the transcription then the com-
peting paths tend to be “closer” to the transcription than if manual
had been used. Both of these issues are examined in this paper. Un-
supervised performance gains from additional data are compared to
those obtained if supervised transcriptions had been used.

An additional problem is that for unsupervised training the shows
will not be checked to see whether they are suitable for target appli-
cation, or indeed are in the target language. For example in Man-
darin broadcasts there are some shows that have significant levels of
English. Rather than relying on the use of segment and word-level
confidence scores to remove these large segments of data, it may be
preferable to eliminate whole shows. In this work, a dual language
system, Mandarin and English, is used that allows the detection of
large percentages of English in shows. In addition, due to acous-
tic mismatches with Mandarin, it also allows the detection of large
percentages of other non-Mandarin languages in shows.

2. UNSUPERVISED TRAINING

This section briefly describes the unsupervised training procedure
used in this work. The general procedure is similar to the approaches
used for both lightly supervised and unsupervised training [1, 2],
but with the need to generatedenominator latticesfor discriminative
training [6].

Segmentation: The initial stage for unsupervised training is similar
to that used for recognising broadcast data. The same procedure as
that described in [9] was used. First, advert removal is run. Here the
arithmetic harmonic sphericity distance is used to detect repeated
blocks of audio data, for example jingles or commercials. Acoustic
segmentation is performed. The data is then split into wide-band
and narrow-band speech. Sections of music are discarded. Finally
gender detection and speaker clustering are run.

Transcription generation: Initial transcriptions are generated using
good acoustic models, MPE trained in this work, and a multi-pass
framework. Is this paper, the P1-P2 framework, normally used as
the initial lattice generation stage in the CU multi-pass recognition



framework [9], is run. The two stages are:

• P1: gender-independent models are used to generate initial
transcriptions using a trigram language model and relatively
tight beamwidths.

• P2: the 1-best hypothesis from the P1 stage is used to gen-
erate adaptation transforms. Here least squares linear regres-
sion and diagonal variance transforms are estimated. Using
the adapted models lattices are generated using a trigram lan-
guage model. These lattices are then rescored using a 4-gram
language model.

In contrast to the normal numbers quoted for the P1-P2 stage, the
Viterbi 1-best is used for the transcription as this is felt to give a
better balance between deletions and insertions.

Denominator lattice generation: All the descriminative training
schemes implemented in this paper make use of denominator lat-
tices as a compact representation of all possible word sequences [6].
The standard approach is to use a weakened language model, nor-
mally a heavily pruned bigram or unigram. The rationale for this is
that the weakened language model increases the number of confu-
sions in the data, hence improving the generalisation of discrimina-
tive training to unseen data. In unsupervised discriminative training
it serves an additional important task. If the same language model
and acoustic models were used as for the transcription generation,
then the best path in the numerator (transcription) and denominator
must, by definition, be the same. This limits possible gains from
discriminative training. The difference between the numerator and
denominator 1-best performance is further increased as ML acous-
tic models (trained on all data including the unsupervised data) are
used in the generation of the numerator lattices. In contrast adapted
MPE models trained on only the manually transcribed data are used
to generate the transcriptions.

Data selection: Two forms of data selection are implemented in this
work. The first makes use of a dual language, Mandarin and English,
system. In Mandarin BN and BC shows, English often appears. For
carefully selected data, such as that used for the 2003 and 2004 NIST
Mandarin BN transcription evaluations, the percentage of English
data is typically in the range of 1-2%. However for some shows this
percentage is significantly higher. It would be useful to select and
eliminate these shows from the training set as they are unlikely to be
appropriate for training Mandarin acoustic models1. Detection of
non-Mandarin shows is performed by setting a threshold on the per-
centage of English word recognised for that show and on the overall
show confidence. The show level confidence scores are estimated by
first generating confusion networks and mapping the resulting con-
fidence scores [10]. Though the dual language system was based on
English and Mandarin, it is found to detect other non-Mandarin data
such as shows containing large percentages of German. After re-
moving “non-Mandarin” shows, further data selection is performed
at the segment level. Segment confidence scores are estimated in
a similar fashion to the show confidence scores. Those segments
that fall below a set threshold are removed. This is similar to the
approaches adopted in [2, 8].

Model training : Using the baseline ML system as the starting point,
in this case a 16 component system, initially ML training is per-
formed using the transcriptions and the average number of compo-
nents per state increased to 36. Then either MMI or MPE discrimi-
native training is performed.

1Though some English data is included in the standard training data [9]
the percentage is relatively small. Furthermore, the accuracy of transcribing
English segments of data is relatively poor.

3. RESULTS

3.1. Experimental Set-Up

The baseline system,S0, was trained on data with manual and ap-
proximate “closed-caption” transcriptions (these will both be referred
to as “manual” to clearly distinguish from the unsupervised data).
This is similar to the basic system described in [9]. The data con-
sists of 155 hours of BN data and 19 hours of BC data. In addition
10 hours of English data, randomly selected from the TDT4 English
data, was used. The basic acoustic features for all the recognition
system were 13 Cepstral coefficients (including energy) and their
derivatives, derived from MF-PLP analysis and segment level CMN.
The static Cepstra were appended with 1st, 2nd and 3rd order deriva-
tives to form a 52-dimensional feature vector and then projected us-
ing a HLDA transform to 39-dimensions. Pitch was extracted, and
appended to the features along with its 1st and 2nd order derivatives.
State-clustered triphone HMMs, with 6K distinct states and an av-
erage of 36 Gaussian components per state were used. The same
decision tree and HLDA transform was used for all systems in this
paper. The total number was also kept fixed at an average 36 for all
systems.

All text was processed using a simple characters to word seg-
menter based on a longest-first match algorithm. The multi-character
word-list for this consisted of about 51K words. Any Chinese char-
acter that wasn’t present in the word-list was processed as an indi-
vidual word. The total word-list, including single-character Man-
darin words and the 10K most frequent English words, was 68K in
size. The language models used in these experiments were trained
using various sources including the LDC giga-word released and the
web download data. In addition the audio data transcriptions for the
baseline system were used. Three separate LM components were
built and interpolated. The first, BN, component used about 1074M
“words” of text. Note the BN component was interpolated with a
general English LM in a ratio of 9:1 for the interpolation weights.
The BC component, comprising only of the transcriptions for the
19 hours of BC data, had 0.24M words of training data. Finally
a component using web-data from Phoenix TV (PHX)2 was built.
64M words of text were retained after ensuring there was no overlap
with any of the test or unsupervised data. This data was found to be
suitable for both BN and BC transcription. Word-based trigram and
4-gram LMs were trained for each source and interpolated.

Two test sets were used to evaluate the systems,bnmdev06 and
bcmdev05. bnmdev06 comprises 3.6 hours of data taken from a
range of BN sources. It includes some of the standard existing test
sets described in [9],dev04f , eval03m andeval04 . In addition
a more recent set of 4 shows taken from July-October 2006 were
used. The evaluation data for BC,bcmdev05, comprises 2.5 hours
of data taken from 5 BC shows during March 2005.

System Data Transcription Data Sel. Size

S0 baseline
manual

— 185 hr
S1 +subset1 — 504hr

S2a
+subset1 auto

— 503hr
S2b CN08 408hr

S3a +subset1
auto

— 955hr
S3b +subset2 CN08 752hr

Table 1. The training sets for acoustic models.

2Thanks to SRI and the Nightingale team for making this data available.



For the unsupervised training experiments two additional sub-
sets of acoustic data were used. The first subset (subset1), after
segmentation and Mandarin show selection, consists of 317 hours of
data, 185 hours of BN data and 132 hours of BC data. Forsubset1
quick transcriptions were also available, comprising 319 hours of
data, 183 hours BN and 136 hours BC. This allows a contrast of the
use of unsupervised training with supervised training. The second
subset (subset2) has 451 hours of data, 301 hours of BN and 150
hours of BC. For this data no transcriptions were available. Table 1
shows the amount of data and the acoustic models that made use of
the data.

3.2. Baseline Performance and Data Selection

LM Interp. Weights Perplexities
BN BC PHX bnmdev06 bcmdev05

v0 1.00 0.00 0,.00 246.2 379.3
v1 0.51 0.17 0.32 254.7 272.4

Table 2. 4-gram perplexities of BN and BC test sets

As both BN and BC data is to be recognised, it is interesting to
examine the differences between the two sets of data. Table 2 shows
the perplexities when using only the BN element of the language
model and the final interpolated LM with BN, BC and PHX com-
ponents. It is clear that in terms of the text there is, as expected, a
large difference between the BC and BN test sets. Without the BC
and PHX components there is a difference of over 130 points in the
perplexities between BN and BC. For all experiments in this paper,
including transcription generation, thev1 language model was used.

System bnmdev06 bcmdev05
S0 12.4 25.0

Table 3. %CER of P1-P2 stages of baseline onbnmdev06 and
bcmdev05

The baseline system,S0, was used to generate the initial tran-
scriptions and confidence selection. Table 3 shows the P1-P2 perfor-
mance3 of these baseline models on the BC and BN tests sets. These
should give an indication of the accuracy of the transcriptions that
were generated. The performance on the BC test set,bcmdev05 ,
has approximately twice the error rate of the BN data,bnmdev06 .
Thus the transcriptions for the BC data should be significantly worse
than those of the BN data.

Two thresholds were used in the show level selection. The first
was a show-level confidence score of 55%, the second a threshold
of 20% for the percentage of English. Four four shows were de-
tected as non-Mandarin and were listened to. Three of the shows
contained large amounts of English interviews and the other show
contained only songs. The amount of data removed using this show
selection approach depends significantly on the care taken in select-
ing the sources and shows recorded. In previous work on the BN
data released under the EARS program, a far larger percentage of
shows were detected as English.

After detecting the “Mandarin” shows, segment level confidence
scores were applied. In this case a threshold of 80% confidence

3All other results are based on unadapted single-pass decodes.

(CN08) was used. The total amount of data retained is shown in
table 1. For example of the 317 hours of data insubset1 95 hours
were removed. An interesting aspect of this data selection was that
far more BC data was removed than BN. Insubset1 only 65.4 hours
of BC data, approximately half, was retained. This shows that confi-
dence scores used are reasonable as the recognition performance on
the BC data is worse than that on the BN data.

3.3. Unsupervised Training

System Trans.
Data CER (%)

Select. BN BC
S1 manual — 22.2 42.4
S2a

auto
— 17.9 32.4

S2b CN08 14.0 21.5

Table 4. %CER of 1-best outputs of denominator lattices versus
numerator transcriptions onsubset1 data

After data selection denominator lattices were generated as de-
scribed in the previous section. In order for discriminative training
to operate well the numerator and denominator 1-best hypotheses
should be different. Table 4 shows the CER for scoring the 1-best de-
nominator output against the transcription (numerator 1-best), for the
S1system built using the manual transcriptions for thesubset1 data
and theS2a/bsystems built using the automatic transcriptions. As
expected the manual transcriptions have a greater mismatch with the
denominator 1-best than the automatic transcriptions. If segment-
based selection is applied, the difference becomes even larger. This
shows an important play-off for unsupervised discriminative train-
ing. Selecting those segments for which there is high confidence in
the transcriptions, reduces the opportunity of discriminative training
to reduce the error rate.
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Fig. 1. Approximate phone accuracy of for MPE training iteration.

Figure 1 shows the approximate phone accuracy during MPE
training. The trends correspond closely with those illustrated at the
CER in table 4. For the manual transcriptions the MPE score is
consistently lower than for the automatic transcriptions.



System
Data bnmdev06

Select. ML MMI MPE

S0 — 15.5 14.3 13.6
S1 — 13.8 12.6 11.5

S2a — 14.5 13.4 12.7
S2b CN08 14.2 13.3 12.6

S3a — 14.4 — 12.3
S3b CN08 14.2 — 12.2

Table 5. Unadapted %CER onbnmdev06

Table 5 shows the performance of the various unadapted single-
pass systems using ML, MMI and MPE training on the BN test set.
A number of interesting trends can be observed. For ML training
the use of segment-level data selection (CN08), shows small con-
sistent gains over using all the data. Moreover with data selection
the gains from usingsubset1 over the baseline (S0) in unsupervised
ML training (S2b), 1.3% absolute, is over 75% of the gains using
the manual transcriptions (S1), 1.7%. For ML training no additional
gain was obtained from usingsubset2. For both forms of discrimi-
native training (MMI and MPE) the gains from using segment-level
data selection are reduced. Usingsubset1 unsupervised MPE train-
ing only obtain about 50% of the gains obtained from using the man-
ual transcriptions in MPE training. However discriminative training
still gave improvements over ML training and MPE training was
consistently better than MMI training. The use of additional data,
subsets2, did give small additional gains for MPE training. Overall
the use of 770 hours of untranscribed data followed by data selection
gave a 1.4% absolute reduction in CER.

System
Data bcmdev05

Select. ML MMI MPE

S0 — 29.2 26.7 25.3
S1 — 26.1 23.3 21.8

S2a — 27.7 25.9 24.7
S2b CN08 27.9 25.8 24.8

S3a — 27.7 — 24.8
S3b CN08 28.0 — 24.7

Table 6. Unadapted %CER onbcmdev05

The models were then evaluated on the BC test set,bcmdev05 .
the results are shown in table 6. For ML training the gains over
the baseline (S0) system from using unsupervised transcriptions with
subset1, 1.5% absolute, were less than 50% of the gains obtained
with the supervised transcriptions, 3.1%. There was no consistent
improvement using segment level data selection for any of the train-
ing schemes. The gains from using discriminative training were
much reduced. MPE unsupervised training withsubset1 gave less
than 20% of the gains obtained with supervised MPE training over
the baseline system. Only a 0.5-0.6% absolute reduction in error rate
was achieved over theS0system. Furthermore the use of additional
data,subset2, yielded no additional gains.

4. CONCLUSIONS

This paper has examined the use of unsupervised training, in particu-
lar when combined with discriminative training. The general process

for unsupervised discriminative is similar to that used in unsuper-
vised training with ML. The main difference is that in discriminative
training it is necessary to also generate denominator lattices. When
generating these lattices, in addition to the standard need to weaken
the LM to improve generalisation, there is the need to make the sys-
tem used to generate the denominator lattices different to that used
for the numerator transcriptions. The paper has also described the
use of a dual language system for data selection.

The performance of unsupervised training for ML, MMI and
MPE systems was evaluated on a Mandarin transcription task. For
this task both BN and BC test data was used. The nature of the two
sets of data was found to be different, both in terms of the word
sequences used and the audio data. For baseline recognition, the
system used to generate the training transcriptions, the performance
on BC had about twice the error rate of BN. For both tasks, ML un-
supervised training, worked well. Even for the harder BC data the
gains from unsupervised ML training were about 50% of those ob-
tained for supervised training on the same data and for BN data about
75%. In contrast for discriminative training, though gains were ob-
tained on BN, they were only about 50% of the supervised gains.
Moreover on BC data the gains were less than 20% of the super-
vised gains. Adding additional unsupervised data gave no additional
gains in performance on BC.

From these results, there appear to be limits to the gains from
unsupervised discriminative training when there is little manually
transcribed data for a particular, mismatched, data type. Whether
this problem can be addressed by incrementally folding in additional
data will be investigated in future work.

5. REFERENCES

[1] L. Lamel, J.L. Gauvian, and G. Adda, “Lightly supervised and
unsupervised acoustic model training,”Computer Speech and
Language, 2002.

[2] H.Y. Chan and P.C. Woodland, “Improving broadcast news
transcription by lightly supervised discriminative training,” in
Proc. ICASSP 2004, May, 2004.

[3] T. Kemp and A. Waibel, “Unsupervised training of a speech
recognizer: recent experiments,” inProc. Eurospeech 99, Sep.
1999, pp. 2725–2728.

[4] L. Lamel, J.L. Gauvian, and G. Adda, “Unsupervised acoustic
model training,” inProc. ICASSP, May, 2001.

[5] F. Wessel and H. Ney, “Unsupervised training of acoustic mod-
els for large vocabulary continuous speech recognition,”IEEE
Trans. on Speech and Audio Processing, 2005.

[6] P. C. Woodland and D. Povey, “Large scale discriminative
training of hidden Markov models in speech recognition,”
Computer Speech and Language, 2002.

[7] D. Povey and P. C. Woodland, “Minimum phone error and I-
smoothing for improved discriminative training,” inICASSP,
2002.

[8] J. Ma, S. Matsoukas, O. Kimball, and R. Schwartz, “Unsu-
pervised training on large amount of broadcast news data,” in
Proc. ICASSP 2006, May, 2006, pp. 1056–1059.

[9] R. Sinha, M.J.F. Gales, P.C. Woodland, and etc., “The cu-
htk mandarin broadcast news transcription system,” inProc.
ICASSP 2006, May, 2006, pp. 1077–1080.

[10] G. Evermann and P. C. Woodland, “Posterior probability de-
coding, confidence estimation and system combination,” in
Proceedings Speech Transcription Workshop, 2000.


