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Abstract
This paper presents an approach for selecting optimal components for discriminant analysis. Such
an approach is useful when further detailed analyses for discrimination or characterization requires
dimensionality reduction. Our approach can accommodate a categorical variable such as diagnosis
(e.g. schizophrenic patient or healthy control), or a continuous variable like severity of the disorder.
This information is utilized as a reference for measuring a component’s discriminant power after
principle component decomposition. After sorting each component according to its discriminant
power, we extract the best components for discriminant analysis. An application of our reference
selection approach is shown using a functional magnetic resonance imaging data set in which the
sample size is much less than the dimensionality. The results show that the reference selection
approach provides an improved discriminant component set as compared to other approaches. Our
approach is general and provides a solid foundation for further discrimination and classification
studies.
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1. INTRODUCTION
Neuroimaging techniques, such as magnetic resonance imaging (MRI) and positron emission
tomography, have been utilized both in research and clinic fields, to scan brain structure or
function for diagnosis and/or prognosis of mental disorders. There is growing interest in
incorporating genetic information and brain images to study the genetic influence of an
inherited mental disorder [1]. Brain imaging data often contains hundreds of thousands of
voxels that need to be analyzed. Similarly, the amount of genes or single nucleotide
polymorphisms is typically large too. It is desirable to extract features or components from the
high dimensional data which convey useful information.

Principle component analysis (PCA) has been used for data reduction, component selection,
and also considered for linear discriminate analysis [2–4]. It can be described in a generic form
as S=W·X, where S are the extracted components, X are the original measurements, and W is
the projection matrix. It is well known that the best components for discrimination are not
necessarily those with the largest variance. A measure of the component importance from
discriminant perspective was introduced by Chang [3], and further developed by Dillon et. al.
[4] and Jolliffe et. al. [2]. This measure is essentially a normalized between-group difference
after projecting to each component’s direction. These measures were developed for datasets
which have a larger sample size than the dimensionality.
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However, there are two limitations about the between-group difference measure proposed by
Chang, when applied to brain image analysis or genetic data. One is related to the sample size
and the dimensionality of the data. For functional MRI (fMRI) data, we consider a group
analysis in which the dimensionality is the number of voxels, which is much larger than the
number of subjects. Activation in each voxel of a brain image is of interest for a specific task.
As exemplified in a feature-based classification application [5], where brain activation images
were used, X is arranged as a subjects-by-voxels matrix, S is a components-by-voxels matrix,
and voxels ≫ subjects. In such a case, due to limited computational resources, the between-
group difference measure is not tractable without an extra modification which will be explained
in detail in the methods section.

The other limitation is that the between-group differences are defined only for categorical
factors. In practice, additional non-categorical information, beyond group membership, such
as age, race, severity of the disorder, etc., all can potentially be discriminant factors. Many of
them are the focuses of biomedical researches. Therefore, a new approach is needed for the
selection of components to discriminate certain groups according to different factors from a
population using their fMRI brain images.

In this paper we provide a systemic approach to select the best components for discrimination,
with a flexible setting. We first introduce the method in section 2 and then explore its
application to fMRI data in section 3. Results are presented in Section 4, followed by discussion
and conclusion.

2. METHODS
2.1. PCA dimensionality reduction using variance

PCA is mathematically defined to transform data into a new orthogonal coordinate system,
such that the greatest variance of data is captured by the first coordinate, the second greatest
variance by the second coordinate, and so on. Consider X, an N-by-D matrix, to be zero mean
observations collected from groups of subjects, N is the subjects’ number and D is the number
of dimensions (N≪D for our applications). Components of interest here are the patterns
embedded in the data among all the subjects, which remove the duplicated information among
subjects and preserves the distinct patterns only. To do so, PCA is employed as described by
(1), where CX is an N-by-N covariance matrix, W is an N-by-N eigenvector matrix of the
covariance matrix and Λ is the corresponding N-by-N eigenvalue matrix. In a typical use of
principle component for dimensionality reduction, the top M components (M<N) with the
largest eigenvalues (e.g. carrying the most variance) are selected. The W matrix is then reduced
to Ŵ, an N-by-M matrix, and S is reduced from an N-by-D component matrix to an M-by-D
component matrix Ŝ.

(1)

2.2. Between-group difference selection of component
Since the components carrying the most variance may not be the ones best characterizing group
differences, variance is not the ideal criterion for selecting the best components for discriminant
analysis. An alternative score, θ, is defined as a selection criteria in (2) by Chang [3]. The
vector d is the mean difference vector between the respective groups. For this case, d is
consisted of D elements. Similarly, wĩ is the ith eigenvector with D elements instead of N
elements, computed through the covariance matrix C̃X (a D-by-D matrix). λ̃i is the

Liu et al. Page 2

Proc IEEE Int Conf Acoust Speech Signal Process. Author manuscript; available in PMC 2010 June 24.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



corresponding ith eigenvalue. The score represents the actual between-group mean difference
projected into each eigenvector direction, and normalized by the component’s variance. For
brain images or genetic data, the dimension of D is easily over tens of thousands. Computing
the covariance matrix C̃X and its eigenvectors can be intractable for regular computers due to
the large amount of memory required. To avoid the computational difficulty of computing such
a large covariance matrix, a substitute approach is proposed in (3) to identify N valid
eigenvectors [6]. Then, the N θ scores can be calculated and sorted in a descending order. The
top M eigenvectors w ̃are then identified from the top M θ scores, as well as their paired
eigenvectors W. Components are selected accordingly by projecting X into the M eigenvectors
of W.

(2)

(3)

2.3. Reference selection of component
In this section, we propose a new approach for selecting the optimal components for
discrimination based on a reference. The reference vector is first defined according to the
subjects’ information. For the simplest case, there are two groups: one group of N1 patients
and one group of N2 healthy controls (N=N1+N2). If group membership is the discriminant
criterion, the reference vector can be constructed as a column vector consisting of −1/N1 (N1
times) and 1/N2 (N2 times), with a sum of zero, and assigning equal weight to each group. A
new score ϕ, is proposed in (4) as a measure of discriminant power via the reference. In this
equation, r is the reference vector that encodes subjects’ group information, λi is the ith
eigenvalue and wi is the corresponding ith eigenvector. Thus, using the above case, the score
function for each component becomes Equation (5), projecting the eigenvector into the
reference direction, scaled by the eigenvalue.

After sorting the ϕ values in a descending order, as well as the corresponding eigenvectors, the
top M components are selected for discriminant purpose by projecting X into the top M
eigenvectors.

(4)

(5)

Since W is the orthogonal eigenvector matrix, we can use this orthogonality to derive Equation
(6).
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(6)

Each column of W is an eigenvector containing the loading parameters of each component.

Thus, the score function can be interpreted as the correlation of the loading parameters of the
component with the reference, scaled with the corresponding variance. In the above example,
the correlation of the loading parameter with the reference is, in fact, the mean difference of
the loading parameters between two groups. The score ϕ indicates the component’s variance
showing the group difference of the loading parameters.

The reference vector can be very flexible, varying with the desired information of interest. For
example, if we are interested in the severity of schizophrenic disorder, the reference can be a
continuous number vector of positive and negative syndrome scale scores, indicating different
levels of severity.

2.4 Evaluation method
To evaluate the results of difference approaches, a two-sample t-test on the loading parameters
(i.e. eigenvector elements) of selected components is performed. We also want to test the
improvement of the ultimate performance (outcome of further study on the components) using
the selected components. As an example, brain networks extracted from components selected
by three approaches are compared.

3. APPLICATION
FMRI has been frequently utilized as a noninvasive tool for studying schizophrenia. Extracting
characteristic features to identify the patients helps further understanding and treatment of the
disorder. We demonstrate feature selection approaches for fMRI components in the paper. Data
from 30 schizophrenia patients and 30 healthy controls were included. All of them provided
written, informed, IRB-approved consent at Hartford Hospital.

FMRI data were acquired during an auditory oddball (AOD) task at the Olin Neuropsychiatry
Research Center at the Institute of Living. The AOD task involves detecting an infrequent
sound (the target) within a series of frequent sounds. A full description of task design is
available in reference [7]. The participants were instructed to respond as quickly and accurately
as possible with their right index finger every time they heard a target stimulus. FMRI scans
were acquired on a Siemens Allegra 3T dedicated head MRI scanner. FMRI images were
preprocessed, including realignment, normalization and smoothing, using the software package
SPM2 (http://www.fil.ion.ucl.ac.uk/spm/). Target-related contrast images (77026 voxels of
interest) were used in this study.

The component number is estimated via a modified Akaike’s Information Criterion [8]. The
top four out of a possible 60 components from each approach are assigned to represent the
discriminant information for the fMRI data.

4. RESULTS
Components selected by variance, group membership reference (a vector constructed with
1/30, and −1/30) and between-group difference are presented here. Table 1 shows two-sample
t-test results (patients versus controls) for each component selected by each approach. With a
p-value threshold of 0.05, bold components in the table indicate the ones with significant group
differences (p<0.05). Two components are identified in the results of variance selection, and
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two in the results of between-group difference selection. Our approach, reference selection,
found three components with significant group differences.

In addition, we computed a two-sample t-test on all possible 60 components, and found that
only 3 components show significant group differences. All three components were in fact
selected by the reference approach, plotted in Fig. 1(A–C). For display, components were
plotted only in voxels with an absolute activation Z score larger than 2. Red color indicates
positive activations, and blue color indicates negative activations. Components A and B in Fig.
1 were selected by the variance approach, and components B and C were selected by the
between-group difference approach.

Component A in Fig. 1 shows activations mainly in superior temporal gyrus, cingulate gyrus,
and medial frontal gyrus. These locations are well-known to be activated during an auditory
task, and present discriminant properties for schizophrenia patients [9]. Component B includes
posterior cingulate gyrus and superior frontal gyrus, which are often studied for schizophrenic
disorder. Component C shows activations mainly in precuneus and uncus that is partially
consistent with our previous finding [1].

5. DISCUSSION AND CONCLUSION
The components selected using variance present the major activation regions during the AOD
task, including bilateral superior temporal gyri, prefrontal gyrus, cingulate cortex and thalamus.
However, only two out of four components show significant group differences. Considering
the components selected by the reference approach, one component is different from those
selected by variance, and that is the additional one showing group difference in the t-test.
Therefore, the reference approach selects a complete set of discriminant components, and at
the same time captures as more variance as possible.

Two components from the between-group difference selection show group differences, and
the other two components are different from those selected by variance (and do show larger
group differences, albeit not significant). The reason for that is because the score θ is
normalized by variance, such that the order of variance not represented in the selected
components. Moreover, the modification of between-group difference selection in (3), has to
be executed, which results in more calculations, and may affect the order of the components.
More investigation is needed.

It is evident that the reference selection extracted more discriminate components than the other
two approaches. These components will then contribute to further discriminate analysis. For
example, independent component analysis has been utilized for the study of fMRI data [10,
11], where principle components serve as input features for finding independent brain
functional networks. If the interest is the distinguishing brain networks between patients and
healthy controls, the idea input features are that carrying group difference information. As an
example, we applied the components selected by three approaches into ICA, to extract
independent brain functional networks that show difference between patients and healthy
controls. One brain network indicating group difference was extracted from the results of
variance selection, plotted in Fig. 2(a). Three brain networks were extracted from the results
of reference selection, plotted in Fig. 2(a,b,c). Three brain networks were also extracted from
the results of between-group difference selection, and include similar brain regions as those
extracted from reference selection, but are sparser. Based on two-sample t-tests, brain networks
from reference selection show lower p-values (average of 0.0028) and higher t-values(average
of 3.60) than those from between-group difference selection (average p-value of 0.0038,
average t-value of 3.30).
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In summary, the reference selection approach is straightforward to implement, especially in
the biomedical filed where the dimensionality is typically larger than the number of subjects.
The reference function in our approach is very flexible, useful under a variety of conditions.
Most importantly, this selection approach provides the most complete discriminate component
set compared with the other two approaches. It can then be useful for further analyzing,
understanding, and characterizing the distinctions among groups.
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Figure 1.
Significant components
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Figure 2.
Brain networks indicating group differences
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