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ABSTRACT

A novel approach for separating heart sound signals (HSSs) from
lung sound recordings is presented. The approach is based on blind
source extraction (BSE) with second-order statistics (SOS), which
exploits the quasi-periodicity of the HSSs. The method is evaluated
on both synthetic periodic signals of known period mixed with tem-
porally white Gaussian noise (WGN) as well as on real quasi peri-
odic HSSs mixed with lung sound signals (LSSs). Qualitative evalu-
ation involving comparison of the power spectral densities (PSDs) of
the extracted signals, by the proposed method and by the JADE algo-
rithm, and that of the original signal is performed for the case of real
data. Separation results confirm the utility of the proposed approach,
although departure from strict periodicity may impact performance.

Index Terms— Blind source extraction, second order statis-
tics, periodicity, nonstationarity, heart sound signal and lung sound
recordings.

1. INTRODUCTION

LSSs are produced in the airways of a human being during inhilation
and expiration cycles [1]. The LSSs propagate through lung tissues
in the parenchyma and can be recorded over the chest wall using a
digital stethoscope. The tissue acts as a spatial frequency filter-like
structure whose characteristics can vary according to pathological
and indeed physiological changes [1]. Besides the fact that normal
and abnormal lung sounds are mixed in the airways, which poses a
problem in terms of their potential use for classification of respira-
tory diseases; quasi-periodic HSS, from heart beat activity, invari-
ably interferes with the LSS and therefore masks or inhibits clinical
interpretation of LSS particularly over low frequency ranges. The
main frequency components of HSS are in the range 20−100 Hz and
this is the range in which LSS has major components [2]. Therefore,
since HSS and LSS overlap in frequency and, they are somewhat sta-
tistically non-stationary, the major problem being faced in separating
HSS from LSS is, doing so, without degrading the main character-
istic features of the LSS. Traditional band-pass filtering with cut off
frequencies of 70 and 100 Hz [3], results in an inefficient perfor-
mance since LSS has major components in this region especially at
low flow rates and there is still spectral overlap with HSS compo-
nents. In [2], researchers have therefore used adaptive filtering with
a pre-processing stage comprising a variable amplifier gain. Other
groups used an adaptive filter based on the least mean square (LMS)
algorithm to remove HS interferences [4]. In both of these cases, re-
searchers used HSS recorded from close to the patient’s heart loca-

tion as the reference signal for the adaptive system, which of course
are not completely free of LSS. Along the same lines, researchers in
[5] have used an adaptive system with the ECG signal information as
the reference signal. The discrepancy with this approach is the con-
siderably high number of filter coefficients required which results in
slow convergence. Efforts have been made to eliminate the use of
a reference signal when performing adaptive filtering. In [6], a sin-
gle recording technique based on a modified version of the adaptive
LMS algorithm was proposed, wherein, a lowpass filter with a cut
off frequency of 250Hz was added in the error signal path. More
recently, in [7], a recursive least squares (RLS)-based adaptive noise
cancellation (ANC) filtering technique was proposed to separate or
reduce the HSS within the LSS. In their approach a bandpass fil-
tered version of the recorded LSS was used as the reference signal.
Although experimental results were promising, the method suffers
from high computational load. Time-frequency (TF) filtering tech-
niques have also been proposed for HSS reduction in LSS [8] and
[9], of which the technique employed in [9] is computationally ef-
ficient [9] but the results are unconvincing. Recently, for the case
of only a single measurement sensor, an adaptive line enhancer was
employed to mitigate the HSS in LSS, which yielded promising re-
sults [10].
In this paper, blind source extraction (BSE) by second order statistics
(SOS) based on the approximate joint diagonalization (AJD) algo-
rithm [11], is used for the first time to mitigate HSS in LSS record-
ings with the assumption that multi sensor recordings are available.
The motivation is to exploit the temporal correlation structure with
the LSS and HSS signals together with the quasi-stationarity within
the HSS signals.
This paper is organized as follows; an overview of BSE by SOS in-
cluding the extraction algorithm used is presented in Section 2. We
consider the extraction of HSS from LSS exploiting periodicity in
Section 3 and present experimental results; a summary and conclud-
ing remarks are given in Section 4

2. OVERVIEW OF BSE BASED ON SECOND ORDER
STATISTICS

Consider the real valued signal generating model:

x(t) = As(t) + n(t) (1)

where s(t) = [s1(t), s2(t), ..., sN(t)]T is a column vector of N mutu-
ally uncorrelated zero-mean unknown source signals,
A = [a1, a2, ..., aN] is an N x N invertible unknown mixing matrix,
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x(t) = [x1(t), x2(t), ..., xN(t)]T is column vector of N observed sen-
sor signals, n(t) = [n1(t), n2(t), ..., nN(t)]T denotes a column vector
of additive white Gaussian zero-mean interfering noise, ai is the ith
column of A, [.]T and t denote respectively the vector transpose and
the discrete time index. In the discussion that follows, the effect of
noise is neglected as it can be easily assumed to be another source.
Based on the assumption that the sources are spatially uncorrelated,
the time lagged autocorrelation matrix Rτ , is defined as

Rτ = E[x(t)xT (t − τ)] =
N∑

i=1

ri(τ)aia
T
i (2)

for τ = 0, 1, ..., K where ri(τ) = E[si(t)si(t − τ)] is the temporal
autocorrelation value of si(t) at time lag τ , and E[.] denotes the sta-
tistical expectation operator.
The goal of BSE is to find a vector w such that y(t) = wT x(t) and
y(t) is a non-zero scaled estimate of one of the source signals.
Observing that x(t) in equation (1) is a linear combination of the
columns of matrix A, the ith source can intuitively be extracted by
projecting x(t) onto direction ai which is a space, orthogonal to, de-
noted by ⊥, {a1, ..., ai−1, ai+1, ..., aN}, all the columns of A except
ai. Henceforth, by defining a vector q⊥{a1, ..., ai−1, ai+1, ..., aN}
and setting t ≡ ai together with adopting oblique projector notation
[12] gives

y(t)t = Et|q⊥x(t) (3)

where y(t) is an estimate of one source, q⊥ is the space spanned by
{a1, ..., ai−1, ai+1, ..., aN} orthogonal to q, and Et|q⊥ = (tqT /qT t)
is the oblique projection of t onto the space q ⊥.
By omitting the scalar (1/qT t) and dropping t from both sides of
equation (3) results in

y(t) = qT x(t) (4)

In BSE based on second-order statistics, both vectors t and q are not
known. In order to extract one source, the following cost function
has been proposed

[t̂, q̂, d̂] = arg min
t,q,d

J(t,q,d) (5)

where J(t, q, d) =
∑K

τ=0 ‖Rτq−dτt‖2, d = [d0, d1, ...dK]T is the
column vector of unknown scalars, and ‖.‖ denotes the Euclidean
norm.
Minimization of the cost function (5) with respect to q̂ leads to the
identification of vector q in equation (4) which can thereby be used
to extract the estimate one of the sources.

2.1. Signal Extraction Algorithm

By employing the sequential approximate diagonalisation algorithm
(SDA) proposed in [11], the cost function (5) is minimized by ad-
justing its parameters alternatively as follows:

• Stage 1 : Freeze both t and d and adjust q to yield the optimal
q:

q ← H

( K∑

τ=0

dτRτ

)
t (6)

where H = [
∑K

τ=0 R2
τ ]−1, and e ← f denotes replacing e by

f.

• Stage 2: Freeze both t and q and consider the Lagrange func-
tion

Jλd = J + λd

( K∑

τ=0

d2
τ − 1

)
(7)

where λd is the Lagrange multiplier, to obtain the optimal d

d ← d

‖d‖ (8)

where d = [rT
0 t, rT

1 t, ..., rT
K t]T .

• Stage 3: Freeze both q and d and adjust t and consider the
Lagrange function

Jλt = J + λt(t
T t − 1) (9)

to obtain the optimal adjustment for t

t ← v

‖v‖ (10)

where v =
∑K

τ=0 dτ rτ .

These three stages are repeated until the cost function (5) converges,
and one source can be extracted according to equation (4). Typically,
five iterations are sufficient and no problem with ill-convergence has
been experienced.
After extracting one source a deflation procedure is employed to re-
move it from the mixture as follows [13]

xi+1(t) = ZT xi(t) (11)

where xi(t) = x(t) in equation (1) and

Z = I − Rτ(i)wwT

σ2
y

(12)

Rτ(i) = E[xi(t)xT
i (t − τ)] and I is the identity matrix.

The autocorrelation matrix is then updated as

Rτ(i+1) = ZT Rτ(i)Z (13)

before another source can be extracted following the same proce-
dure, equations (6-13).
This extraction is computationally simple when compared with other
AJD algorithms [14].

3. EXTRACTION OF HSS FROM LSS EXPLOITING
PERIODICITY

Successful minimization of the cost function (5) in concert with
equation (4) leads to the extraction of any one source. It is not pos-
sible to extract the source of interest (SoI) unless some additional
information about this is known a priori. The source of interest in
our case is the HSS. If the fundamental period, or its approximation,
of the SoI is known, then the algorithm can be made to focus only on
this specific source. This is based on the fact that if the fundamental
period is, say, M samples, then its autocorrelation matrix will have
the same value at time lag cM, where c is any integer. Hence, the au-
tocorrelation matrices Rτs can jointly be diagonalized at time lags
τ = 0, M, ..., KM along with constraint d0 = d1 = ... = dK .
To this end, we exploit knowledge of the HSS periodicity in order
to extract it from the LSS. By using techniques such as the one
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introduced in [15], the cycle frequency of HSS may be estimated
and hence its period. The method called heart instataneous fre-
quency (HIF) was developed for the extraction of the instantaneous
heart rate from non-stationary electrocardiagram (ECG) signals, the
value of which varies over time due to pathological and physiologi-
cal changes. The steps to extract HIF or cyclic frequency are sum-
marized below:

• Obtain the signal to be analysed s(t).

• Calculate the spectrogam S(t, f) of s(t).

• Find the frequency value at which S(t, f) attains its maximum
value in a given frequency interval [δ(t−) − γ, δ(t−) + γ],
where δ(t−) is the value of the driver at the previous time,
and the frequency range scanned is limited by γ.

• Divide the original signal s(t) into signals sΩ(t) with short
time intervals Ω.

• Obtain signal zΩ(t) by passing sΩ(t) through a band-pass fil-

ter with center frequency ˆδ(t), which is the mean of δ(t).

• For each zΩ(t), find the instantaneous frequency from ω(t) =
φ(t + 1) − φ(t), φ(t) = tan−1(−H[zΩ(t)]/zΩ(t)), where
H[zΩ(t)] is the Hilbert transform of the signal zΩ(t).

• From f = 1/T, compute T, where T is the signal period, this
is rounded if necessary.

In practice, any lung sound recording performed invariably contains
both HSS and LSS. However, if the recording transducer is placed
closer to the person’s heart location, then HSS spectral components
would be more dominant in the recorded signal than LSS. The method
outlined above can then be used to estimate the period of the HSS
dominant signal.

3.1. Simulation Results

In this section, we demonstrate the ability of the BSE algorithm to
mitigate HSS in the LSS recordings. Two examples are considered.
In the first example we consider a deterministic periodic signal and
the WGN that have been mixed by a mixing matrix A with elements
drawn from a standardized Gaussian distribution, and the second ex-
ample considers two real HSS and LSS measurement signals that
have been mixed in the same manner. The HSS and LSS signals are
obtained from R.A.L.E. data sets available at: www.rale.ca/. Quali-
tative evaluation is performed in the second example by comparing
power spectral densities (PSDs) of the signals before and after mix-
ing for our method and for the JADE algorithm, a benchmark BSS
algorithm [16].

3.1.1. Blind source extraction of a periodic signal of known period

In this simulation we consider two source signals. One is the pe-
riodic pulsetrain signal and the other is the white Gaussian noise
(WGN) signal, a portion of which is shown in Figure 1 (top subplot).
The SoI is the periodic signal whose period is 50 samples. The two
signals are mixed as shown in the same Figure (bottom subplot). By
setting the period to 50 samples, and K, the number of autocorrela-
tion matrices, to 30, the algorithm is run and the SoI is obtained as
in Figure 2 (top subplot), confirming an accurate reconstruction. As
seen from the same Figure (bottom subplot), when no information
about the periodicity is incorporated in the algorithm, the algorithm
locks onto the noise component.
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Fig. 1. Pulsetrain and noise before mixing (top), and the linera mix-
tures (bottom)
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Fig. 2. Extracted signals: pulsetrain (top), and the noise (bottom)
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Fig. 3. HSS and LSS before mixing (top), and the linear mixtures
(bottom)
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Fig. 4. Extracted HSS

3.1.2. Blind source extraction of the HSS

In this simulation, the two source signals are the HSS and the LSS
signals, shown in Figure 3 (top subplot). The SoI in this case, is the
HSS signal whose period can be estimated by the method outlined
in Section 3. The two signals are mixed by a matrix A with random
elements drawn from a standardized Gaussian distribution to yield
the mixtures in Figure 3 (bottom subplot). Figure 4 shows the recov-
ered HSS signal obtained after running the algorithm. As seen from
Figure 4, the HSS has also been recovered from the mixture though
it is slightly corrupted in the regions of low signal (HSS)-to-noise
(LSS) ratio. The PSDs in Figure 5 show that the frequencies of the
original HSS signal have been preserved in the recovered signal for
both cases, although there is a change in magnitude of the extracted
signal, but this is a result of scale ambiguity and can easily be miti-
gated. Moreover, the performance is as good as the full JADE blind
source separation algorithm which extracts all the sources, but suf-
fers from the problem of reliably estimating fourth order statistics.
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Fig. 5. Comparison of PSDs for: original HSS , extracted HSS by
our method, and extracted HSS using the JADE algorithm

4. SUMMARY AND CONCLUSIONS

The performance of the BSE algorithm depends on a prior knowl-
edge of the source signal. Knowledge of the period of the SoI helps
to extract the source signal of interest from the mixture. From other
investigations of the convergence of the algorithm, it appears that
there is an optimum number of the autocorrelation matrices that have
to be used such that the algorithm converges well. This subject and
considering the effect of error in the period estimation given nonsta-
tionary HSS are the focus of on going research.
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