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ABSTRACT

This paper considers the image reconstruction problem when
the original image is assumed to be sparse and when limited
information of the point spread function (PSF) is available.
In particular, we are interested in reconstructing the magneti-
zation density given Magnetic Resonance Force Microscopy
(MRFM) image data, and an alternating iterative algorithm is
presented to solve this problem. Simulations demonstrate its
performance not only in the reconstruction of the original im-
age, but also in the recovery of the partially known PSF. In
addition, we suggest the introduction of a smoothing penalty
on allowable PSFs to improve the reconstruction.

Index Terms— Image restoration, Blind deconvolution,
Magnetic resonance force microscopy, Sparseness regulariza-
tion, Optimization transfer

1. INTRODUCTION

The objective of image deconvolution is to recover a noisy
and blurred version of an image. Common techniques of
achieving this include Maximum-Likelihood (ML) and least
squares formulations, when the statistical properties of the
noise are at hand, and appropriate regularizing measures are
taken.

In MRFM, a relatively new imaging technology capable
of atomic-level resolution, the PSF of the system is sometimes
known up to some prescribed error tolerance. In the previous
formulation of this problem [1], pathological estimates of the
true PSF were allowed. However, from the physical nature of
a MRFM experiment, it makes sense to restrict our attention
to a space of PSFs which have certain smooth characteristics,
to be de ned more precisely later. This effectively reduces the
search space of the estimated image and gives rise to a more
realistic estimate of the true PSF. We consider a parametric
model of the PSF, h(θ), in [2], which includes parameters
such as the externally applied magnetic eld, Bext, and the
magnitude of the rf eld, B1. We then linearize about a nom-
inal PSF, i.e. h(θ) = h(θ0) + h′(θ)(θ − θ0). By linearizing
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the PSF about its nominal value, we can recast the norm of
the error as a non-isotropic quadratic criterion.

The topic of image deconvolution has been explored in de-
tail [3]. Satisfactory reconstruction results have been obtained
in [4] by employing a total variation (TV) based reconstruc-
tion method in an alternating minimization algorithm, which
also simultaneously reconstructs the unknown PSF and im-
age. The authors make minimal a priori assumptions on the
PSF, but state the motivation for using TV is due to the fact
that PSFs can have edges.

In this paper, certain modi cations are made to the clas-
sical deconvolution problem. Namely, we make the assump-
tions that the original image is sparse in the image domain,
and that partial knowledge of the PSF of the imaging system
is available. The hope is that this a priori information will
bolster the performance of our reconstruction algorithm.

2. PROBLEM STATEMENT

Here, we recall the problem of reconstructing a blurred and
noisy image that is sparse. We assume the following model

y = Hx + n, (1)

where the original image is denoted as x ∈ R
n, the blurring

matrix as H ∈ R
m×n, and the noise vector is denoted by

n ∈ R
m. When H describes a convolution, it is Toeplitz, and

if we zero-pad the image appropriately, H is circulant, and
hence diagonalizable by the discrete Fourier transform (DFT)
matrix.

If n is a zero-mean white Gaussian noise vector, then the
maximum likelihood (ML) estimator of x is the minimizer of
the cost function

J(x) = ‖Hx− y‖2. (2)

We use ‖ · ‖ to denote the l2 norm ‖ · ‖2, where ‖x‖2 �∑n
i=1 x2

i . Other norms such as l1, which is de ned as ‖x‖1 �∑n
i=1 |xi|, will be written explicitly. We assume the matrix

H is partially known, i.e., H = H0 + εΔ, where

‖Δ‖W � ‖WΔ‖ ≤ ε, (3)

and W is a non-identity smoothing matrix. The l2 norm of a
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matrix C will be de ned as ‖C‖ � maxs �=0
‖Cs‖
‖s‖ .

Previously, we considered the case when Δ had unity l2
norm, i.e., ‖Δ‖ ≤ 1. Intuitively, we now rule out bad esti-
mates H0 of the PSF which may have satis ed the previous
constraint of ‖H−H0‖ ≤ ε, e.g., if we contaminate H with
white noise. Thus the cost function in (2) can be expressed as

J(x) = ‖(H0 + εΔ)x− y‖2. (4)

We study the minimax criterion in order to remove the depen-
dence on Δ. That is, we look for the x which minimizes (4)
so that the cost function becomes

J(x) = max
Δ
‖(H0 + εΔ)x− y‖2 s.t. ‖Δ‖W ≤ ε. (5)

Since we view the linear operator H acting on x to be the
convolution operator, by the commutative property of convo-
lution, we may write Hx = Xh, where now X is assumed
to be a circulant matrix and hence diagonalizable by the DFT
matrix, which we will denote by F. Thus, we write

X = Fdiag(FHx)FH , (6)

where FH denotes the conjugate transpose of F. Similarly,

H = Fdiag(FHh)FH

Δ = Fdiag(FHδ)FH .

Here, diag(x) represents a diagonal matrix whose entries are
the elements of x. This treatment is amenable to analysis
and yields computational savings, as matrix multiplication be-
comes convolution, which may be ef ciently implemented via
the FFT.

2.1. The Sparse Constraint

Recall that the sparsity of an image x is the number of
nonzero elements of x. More precisely, the sparsity is de ned
in terms of the l0 norm as

‖x‖0 �

n∑
i=1

I(xi �= 0), (7)

where I(·) is the indicator function. Suppose we are given H̃,
and we wish to minimize the following objective function

min
x
‖H̃x− y‖2 s.t. ‖x‖0 ≤ p. (8)

This problem is combinatorial in nature, with a total of∑p
i=0

(
n
i

)
possible solutions, and can be shown to be NP-

hard. A well-known method for solving problems of this type
is by employing convex relaxation to the problem. That is,
we replace the l0 constraint with an l1 constraint, and under
certain conditions on H̃, each formulation yields the same
solution. Therefore, we instead seek to minimize

min
x
‖H̃x− y‖2 s.t. ‖x‖1 ≤ p̃. (9)

By introducing a sparse constraint on the image, we now seek
to nd the optimal sparse image. We use the method of La-

grange multipliers to express (9) as

x̂ = argmin
x
‖H̃x− y‖2 + λ‖x‖1. (10)

We consider two approaches for solving (9). In the rst ap-
proach, the solution is obtained via an iterative thresholding
technique described in [5]. If we let s be the largest singular
value of H̃, the minimization can be achieved by minimizing
with respect to each xi independently as

x̂i
(n+1) = fλ

2
([x̂(n) + H̃T (

y

s2
− H̃x̂(n))]i), (11)

where fθ(·) is the (nonlinear) soft thresholding operator,
which acts element-wise on a vector x as follows

fθ(x) =
(
x− sgn(x)

θ

2

)
I(|x| ≥

θ

2
). (12)

The second approach utilizes the concept of optimization
transfer, described in [1]. If we denote our optimality criterion
by F (x), the idea is to nd a non-negative function Q(x,x′),
i.e., Q(x,x′) ≥ 0, and such that Q(x,x′) = 0 if and only if
x = x′. Then the iterations

x̂(n+1) = argmin
x

F (x) + Q(x, x̂(n)), (13)

are such that F (x̂(n)) is a non-increasing function of n. Let
F (x) = ‖H̃x − y‖2 + λ‖x‖1 in (10). Now observe that for
all x, x′ in R, where x′ �= 0,

|x| ≤
x2

2|x′|
+
|x′|

2
, (14)

Thus, for all x′ whose components are nonzero,

F (x) ≤ ‖H̃x− y‖2 +
λ

2

(
xT diag(

1

|x′|
)x + ‖x′‖1

)
. (15)

Additional care must be taken when one or more of the com-
ponents of x′ is zero. Therefore, we set

x̂(n+1) = argmin
x
‖H̃x−y‖2+

λ

2

(
xT diag(

1

|x̂(n)|
)x

)
. (16)

The surrogate function introduced for ‖x‖1 was inspired by
[6]. By differentiating with respect to x, it can be shown that

x̂(n+1) =

(
H̃T H̃ + λ · diag(

1

|x̂(n)|
)

)−1

H̃T y. (17)

Assuming the inverse above exists, we compute it via a se-
ries of Landweber iterations. As the sparsity increases, the
computation time of (17) decreases rapidly.

2.2. The Smoothness Constraint

As mentioned in the introduction, we are imposing a smooth-
ness penalty on allowable PSFs. Thus, we seek to maxi-
mize the following cost function, while taking advantage of
the conventions set out earlier, toward a minimax criterion.

546

Authorized licensed use limited to: University of Michigan Library. Downloaded on May 5, 2009 at 10:47 from IEEE Xplore.  Restrictions apply.



Hence, Equation (5) becomes

δ̂ = arg max
δ
‖e + εXδ‖2 s.t. ‖Wδ‖2 ≤ ε, (18)

where e denotes the observation error vector, i.e., e =
H0x − y. By employing Lagrange multipliers, (18) may
be expressed as

δ̂ = arg min
δ
−‖e + εXδ‖2 + γ‖Wδ‖2. (19)

By differentiating (19) with respect to δ, and equating to zero,
the minimizer becomes

δ̂ = ε
(
γWT W− ε2XT X

)−1
XT e. (20)

By incorporating the sparse constraint in Section 2.1, the new
regularized cost function becomes

J(x; δ) = ‖(H0 + εΔ)x− y‖2 = ‖X(h0 + εδ)− y‖2

s.t. ‖x‖1 ≤ p̃ and ‖Wδ‖2 ≤ ε. (21)

3. ALTERNATING ALGORITHM

The alternating algorithm to solve the regularized cost func-
tion (21) proceeds as follows

Alternating algorithm

1. Initialize x(0) to a suitable rst estimate (e.g. via
thresholding), y(0) = y, andH(0) = H0.

2. Update x(n) by solving

x(n+1) = arg min
x
‖H(n)x− y(n)‖2 s.t. ‖x‖0 ≤ p.

3. UpdateH(n) and y(n) by solving

arg max
H
‖y −Hx(n)‖2 s.t. ‖WΔ‖2 ≤ ε.

4. When the stopping criterion is met, output the
estimated image x(n) and the estimated PSF H(n).

The steps of the algorithm warrant some elaboration. In step
two, we employ the methods discussed in Section 2.1 to arrive
at Equations (11) and (17), with H̃ and y replaced by H(n)

and y(n) respectively. In step three, we follow the discussion
in Section 2.2, arriving at Equation (20), where we replace δ̂

by δ(n). By substitution, we have

‖e+ εXδ‖2 = ‖
(
I + ε2X(γWT W− ε2XT X−1)XT

)
e‖2,

which allows us to update H(n) and y(n) as

H(n+1)=

(
I+ε2X(n)

(
γWT W−ε2X(n)T X(n)

)
−1

X(n)T
)
H0,

y(n+1)=

(
I+ε2X(n)

(
γWT W−ε2X(n)T X(n)

)
−1

X(n)T
)
y.

3.1. Reconstructing the PSF

An alternative approach is to set the smoothing penalty γ suf-
ciently high in the alternating algorithm. After the comple-

tion of the algorithm, with the reconstructed image x̂ xed,

we solve the minimization problem as before to recover H.

argmin
δ
‖X̂h− y‖2 + γ̃‖Wδ‖2, (22)

where γ̃ is the smoothing penalty we enforce. It should be
emphasized that while we reconstruct H this way, we do not
substitute the reconstructed H back into the algorithm.

4. SIMULATIONS

Here, we test the effectiveness of the alternating algorithm in
recovering both the original image x and the true PSF. As be-
fore, we generate 33× 33 images in Matlab� with all but 10
nonzero pixels. The nonzero pixel locations are chosen uni-
formly at random and the values are set to 1. For purposes of
illustration, the image in Fig. 2(a) was arti cially constructed,
i.e., non-random.

As mentioned in the Introduction, since we have moti-
vated this paper based on MRFM, the PSF of H that we use,
is an idealized two-dimensional realization of an MRFM PSF.
H and H0 are depicted in Fig. (1), where H0 is chosen to be
a smooth approximation of H and such that it satis es the cri-
terion ‖WΔ‖ ≤ ε. We base the smoothing operator W on
a Gaussian kernel, and choose ε to be 1. The blurred noisy
image is generated by convolving the PSF corresponding to
H and adding zero-mean white Gaussian noise with standard
deviation σ = 0.2.

By experimentally adjusting the smoothing penalty γ and
the sparsifying penalty λ, we are able to nd a realization of
these parameters which yields a satisfactory reconstruction of
the image. For the image in Fig. 2(a), we set γ = 1×107 and
λ = 0.02. The reconstructed image is displayed in Fig. 2(c).

Next, we implemented a test to see how closely we could
approximate the true PSF by running 1000 iterations of the
alternating algorithm with a large smoothing penalty until the
error between the true image and the approximant became
tolerable. Empirical evidence suggests the algorithm exhibits
nice convergence properties. We then xed this estimate of x

and tried to recover the true PSF by relaxing the smoothing
penalty (γ = 1). The sum of squared error (SSE) ‖x̂ − x‖2

is depicted in Fig. 3. In Fig. 1(c) the recovered H is shown.
It is evident from this gure that by relaxing the smoothing
penalty, we are better able to approximate the true PSF.

5. CONCLUSIONS AND FUTURE DIRECTIONS

This paper introduced a non-identity smoothing penalty on
allowable PSFs. A new alternating iterative algorithm was in-
troduced in closed form which accomplishes this added con-
sideration. Empirical evidence suggests gains in performance
are created with this new formulation. An added advantage
is that we are able to approximate the true PSF of the system
better. Techniques of determining the proper values of γ and
λ remain to be explored, as well as exploring the convergence
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(a) The true PSF H.
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(b) The approximate PSF H0.

2 4 6 8 10

2

4

6

8

10

0

0.01

0.02

0.03

0.04

0.05

0.06

(c) The reconstructed PSF. This PSF was
created by imposing a smoothing penalty
of γ̃ = 0.5 after the completion of the al-
gorithm.

Fig. 1. The true, approximate and reconstructed PSFs.

issues of the alternating algorithm. It might also be worth-
while to investigate the performance of the algorithm when
hard thresholding is implemented versus soft thresholding.
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(c) The reconstructed image.

Fig. 2. The original, noisy and reconstructed images.
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