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ABSTRACT
Recently, we proposed a noniterative cepstral technique for

exact signal recovery in frequency-domain optical-coherence

tomography. In this paper, we address the influence of mea-

surement noise on the performance of the method. We derive

analytical expressions for the bias and variance of the tomo-

gram under a small noise approximation, and show that our

technique yields unbiased and consistent estimators, which

have a variance that is proportional to that of the noise and

inversely proportional to the data size. We present simulation

results to confirm the theoretical derivations. We also derive

approximate Cramér-Rao bounds (CRBs) on the achievable

accuracy of reconstruction.

Index Terms— frequency-domain optical-coherence to-

mography (FDOCT), cepstrum, bias, variance, mean square

error, Cramér-Rao bound.

1. INTRODUCTION

Frequency-domain optical-coherence tomography (FDOCT)

is now widely recognized as a fast technique for non-invasive

three-dimensional imaging of biological specimens. With a

penetration depth of 2-3 mm in tissue, resolution of the order

of a few micrometers, higher sensitivity [1] and faster imag-

ing speed [2], it has superseded its time-domain counterpart.

The quality of tomograms that one achieves is closer to that

obtained by high-resolution and invasive methodologies such

as histology. FDOCT has been successfully applied in tissue-

imaging, dermatology, and opthalmology [2, 3, 4, 5], with

some of them being in vivo.

In FDOCT, the depth information is acquired within a sin-

gle exposure by means of spectrometer detection. A standard

approach to reconstruct the tomogram is to apply the inverse

Fourier transform [6]. However, it is known to introduce au-

tocorrelation artifacts and complex-conjugate ambiguity. The

latter can be suppressed by placing the zero-delay plane of

the interferometer outside the specimen. In our earlier work
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Fig. 1. Schematic of the Fourier-domain optical-coherence

tomography system.

[7], we proposed a new algorithm to suppress the remaining

autocorrelation artifacts. In this paper, we analyze its noise

sensitivity, derive expressions for the bias and variance and

also corroborate the analytical predictions with Monte-Carlo

analysis.

2. SIGNAL ACQUISITION AND ARTIFACT-FREE
TOMOGRAM RECONSTRUCTION

Figure 1 displays a typical FDOCT experimental setup. It is a

Michelson interferometric configuration comprising an object
arm and a reference arm. The light source is chosen to pos-

sess a broad spectrum so as to achieve high axial resolution.

The source output is split into two beams, one of which is

directed towards the object arm and the other towards the ref-

erence arm. A broadband mirror placed in the reference arm

acts as a perfect reflector. The backscattered light from the

specimen placed in the object arm is coherently amplified by
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the reference-arm signal, when the two are suitably combined.

The resulting interference signal is recorded by a spectrome-

ter, as a function of the wavelength λ. These measurements

are then mapped onto the wavenumber scale k =
2π

λ
. The

measured signal then takes the form

I(ω) = S(ω) |1 + A(ω)|2 , (1)

where A(ω) =
∫ ∞

0

a(z)e−j ω zdz, ω = −2kn, n being the

refractive index of the specimen, and where a(z) is the scat-

tering function. The objective is to recover a(z) from I(ω). In

[7], we proposed a new technique to accomplish this task. It

is summarized as follows: Given the measurements I(ω) and

S(ω), we compute the cepstrum c(z) = F−1 {log (I/S)} (z),
where F denotes the Fourier transform operator. The causal

part of c(z) is retained by multiplying with a unit-step func-

tion u(z) to yield c+(z). Next, we compute the Fourier trans-

form of c+(z) to obtain C+(ω). The nonlinear transformation

exp
(
C+(ω)

) − 1 yields A(ω) from which a(z) is obtained

by an inverse Fourier transform as a(z) = F−1{A}(z).
In the following analysis, we consider a discrete setting in

which ak, Ak, Sk and Ik denote the samples of a(z), A(ω), S(ω)
and I(ω) respectively.

3. BIAS AND VARIANCE OF THE CEPSTRAL
RECONSTRUCTION TECHNIQUE

Our model for the noisy signal is that of a deterministic signal

in random additive noise Wk, and is given by

Ik = Sk |1 + Ak|2 + Wk, 0 ≤ k ≤ N − 1, (2)

where |Ak| � 1, and where Wk is assumed to have a Gaus-

sian distribution with zero mean and variance σ2
w. Rewriting

(2) as

Ik = Sk |1 + Ak|2
(

1 +
Wk

Sk |1 + Ak|2
)

, 0 ≤ k ≤ N − 1,

(3)

and taking its logarithm, we get

log Ik = log Sk +log |1 + Ak|2 +log

(
1 +

Wk

Sk |1 + Ak|2
)

.

(4)

Under the assumption that the noise is small in comparison to

the signal, we invoke the approximation log(1 + x) = x +
O (

x2
)
, for |x| < 1, where O denotes the Landau symbol.

Using the approximation, we rewrite (4) as

log Ik − log Sk = log |1 + Ak|2 + αkWk, (5)

where αk =
1

Sk |1 + Ak|2
, and where the higher-order terms

are not shown for the sake of brevity. Taking the inverse dis-

crete Fourier transform (IDFT) on both sides of (5), we obtain

the cepstrum

ĉm =
1
N

N−1∑
k=0

(
log |1 + Ak|2 + αkWk

)
ej 2 π

N k m,

= cm +
1
N

N∑
k=0

αkWkej 2 π
N k m, (6)

where cm is the cepstrum in the absence of noise. The causal

cepstrum is given by

ĉ+
m =

{
ĉm if 0 ≤ m ≤ N

2 − 1,

0 if N
2 ≤ m ≤ N − 1.

(7)

The DFT of {ĉ+
m, 0 ≤ m ≤ N − 1} is

Ĉ+
k =

N/2−1∑
m=0

ĉme−j 2 π
N k m, 0 ≤ k ≤ N − 1,

= C+
k +

1
N

N/2−1∑
m=0

N−1∑
�=0

α�W�e
j 2 π

N � me−j 2 π
N k m,

= C+
k +

1
N

N−1∑
�=0

α�W�

N/2−1∑
m=0

ej 2 π
N (�−k) m

︸ ︷︷ ︸
β�,k

,

= C+
k +

1
N

N−1∑
�=0

α�β�,kW�, (8)

where the β�,k are deterministic. When the Ĉ+
k are raised to

the exponent of the Naperian base e, we get,

Âk = exp
(
Ĉ+

k

)
− 1,

= exp

(
C+

k +
1
N

N−1∑
�=0

α�β�,kW�

)
− 1,

≈ exp
(
C+

k

)(
1 +

1
N

N−1∑
�=0

α�β�,kW�

)
− 1, (9)

where the approximation ex = 1 + x + O{x2}, |x| < 1, has

been used. This approximation is valid under the small-noise

assumption. Hence,

Âk = Ak + exp
(
C+

k

)( 1
N

N−1∑
�=0

α�β�,kW�

)
. (10)

The scattering function estimated by applying the IDFT to the{
Âk, 0 ≤ k ≤ N − 1

}
is given as

âm = ak +
1

N2

N−1∑
�=0

α�W�

N−1∑
k=0

exp
(
C+

k

)
β�,kej 2π

N k m

︸ ︷︷ ︸
γ�,m

,

= am +
1

N2

N−1∑
�=0

α�γ�,mW� , 0 ≤ m ≤ N

2
− 1,(11)
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where the γ�,m are deterministic. Applying the expectation

operator E on both sides of (11), we get

E{âm} = am, (12)

where we have used the assumption that the noise has zero

mean. Thus, our technique yields unbiased estimates. The

variance of âm is

E
{
|âm − E{âm}|2

}
=

σ2
w

N4

N−1∑
�=0

α2
� |γ�,m|2. (13)

4. BIAS AND VARIANCE OF THE FOURIER
RECONSTRUCTION TECHNIQUE

In the conventional Fourier reconstruction technique, it is a

common practice to subtract the measured source spectrum

Sk from the measurements Ik, before applying the IDFT. This

operation boosts the information-carrying interference fringes.

Thus, we have

Hk = Sk |1 + Ak|2 + Wk − Sk, 0 ≤ k ≤ N − 1,

= 2Sk Re{Ak} + Sk|Ak|2 + Wk. (14)

The IDFT of {Hk, 0 ≤ k ≤ N − 1} is given by

hm =
1
N

N−1∑
k=0

(2Sk Re{Ak} + Sk|Ak|2 + Wk)ej 2 π
N k m. (15)

Considering only the causal part of hm, we get âm = (s ∗
a)m + (s ∗ raa)m + wm, where sm is the source autocorre-

lation, wm is the noise, and raa is the autocorrelation of the

scattering function, all of these being in the spatial domain.

The source has a convolutional effect and the noise is addi-

tive. The expectation of âm is given by

E{âm} = (s ∗ a)m + (s ∗ raa)m, (16)

which implies that the estimates are biased. The variance is

given by E
{
|âm − E{âm}|2

}
=

σ2
w

N
.

5. CRAMÉR-RAO BOUNDS

We derive the CRBs corresponding to Ak =
N−1∑
m=0

ame−j 2 π
N k m

in (2), where the am are assumed to be real. The entries of the

Fisher information matrix J are given by

J�,�′ = E
{

∂ log f

∂a�
· ∂ log f

∂a�′

}
, 0 ≤ 
, 
′ ≤ N − 1, (17)

where f is the probability density function of {Ik, 0 ≤ k ≤
N − 1}. After some computations, we arrive at

J�,�′ =
1

4σ2
w

N−1∑
k=0

η�,kη�′,k, (18)

 

 

Fig. 2. A comparison of approximate theoretical variances vs.

those obtained by simulation (SNR=20 dB). The variances of

the cepstral and the Fourier techniques are nearly identical.

where

η�,k = −2Sk cos
(

2 π k


N

)
−2Sk

N−1∑
p=0

ap cos
(

2 π (
 − p)k
N

)
. (19)

(
J−1

)
k,k

gives a bound on the variance of âk, however, it is

not easy to compute it in a closed form. Numerical calcula-

tions show that J becomes singular even for small values of

N . We propose to use the pseudoinverse of J instead, keeping

in mind that this may yield an inaccurate bound.

6. MONTE-CARLO ANALYSIS

Deconvolution of the source spectrum is implicit in our tech-

nique, which is not the case with the Fourier technique. There-

fore, to make a fair comparison, we set the source spectrum

to unity within the measurement bandwidth. We synthesize a

one-dimensional scattering function corresponding to a three-

layered specimen. Next, we generate 500 realizations of white

Gaussian noise and compute estimates of the scattering func-

tion by using the cepstral as well as the standard Fourier tech-

niques. We repeat the experiment for different values of signal-

to-noise ratio (SNR), and corresponding to each value, we

compute the variance of the estimator. Figures 2 and 3 show

the variances of the estimates given by the two techniques

corresponding to SNR=20 dB and 40 dB, respectively. The

variances at an arbitrarily-chosen depth are shown in Fig. 4,

559



 

 

Fig. 3. A comparison of approximate theoretical variances vs.

those obtained by simulation (SNR=40 dB). The variances of

the cepstral and the Fourier techniques are nearly identical.

together with the theoretical variances and the CRBs. Note

that the two techniques have almost identical variances. The

pseudoinverse-based CRB is quite pessimistic, because it un-

derestimates the performance of the best estimator. The two

techniques are significantly better than the bound.

7. CONCLUSION

We addressed the noise performance of a new cepstral recon-

struction algorithm for frequency-domain optical-coherence

tomography [7]. We also compared the noise-sensitivity with

respect to the conventional Fourier technique. Inspite of it be-

ing nonlinear, our technique has a variance that is as low as

that of the linear technique. This implies a high consistency

of reconstruction across different realizations of the scatter-

ing function, which is a useful feature in practice. The added

advantage is that our technique suppresses the autocorrelation

artifacts and yields unbiased estimates. Comparisons to itera-

tive reconstruction techniques will be reported separately.
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