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ABSTRACT
In this paper, we present a new method for stochastic simula-
tion of coupled chemical reactions. In this method we obtain
recursive expressions for propagating the first two moments
of the probability distributions over time. Its advantage over
other simulation methods is that it does not require Monte
Carlo simulations, and hence it performs several orders of
magnitude faster than existing Monte Carlo methods. Sim-
ulation results are presented for some examples of coupled
first-order reactions.

Index Terms— stochastic simulation, biological systems,
biochemical processes.

1. INTRODUCTION

We are interested in predicting the time dependent behavior
of genetic networks such as protein-DNA and DNA-DNA in-
teractions, and biochemical networks such as interaction be-
tween proteins. There are two popular frameworks for mod-
eling such networks. In the deterministic framework, we have
a set of reaction rate equations with the unknowns being the
molecular concentrations. In the stochastic framework, we
have the chemical master equation with the unknowns being
the probability distributions of the number of molecules. The
deterministic framework is appropriate for systems with large
number of molecules. However, in many inter- and intracel-
lular biochemical reactions, some molecular species occur in
very small numbers and therefore the deterministic approach
would be inappropriate. Further, if a system operates close
to unstable equilibria, stochastic fluctuations can be ampli-
fied [1], [9], which again makes the deterministic methods
unsuitable. Hence, it has been widely accepted that stochastic
approaches can produce more accurate results.
Within the stochastic framework, McQuarrie presented an-

alytical solutions to the chemical master equation for a small
number of first-order and second-order reactions using prob-
ability generating functions [10]. Laurenzi obtained the ana-
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lytical solution for the reversible second-order reaction using
the Laplace transform [8]. Zhang et al. obtained solutions
for a system of first-order reactions using the Laplace trans-
form method [14]. Darvey et al. [3] and Dunstan et al. [4]
derived equilibrium distributions for a few second-order reac-
tions. In 1976, Gillespie introduced the stochastic simulation
algorithm (SSA), which is a Monte Carlo-based method for
obtaining the molecular distributions in complex systems [6].
The SSA is an exact method and its advantage is that it is
straightforward to implement. However, this algorithm simu-
lates only one reaction per time step, and therefore it is com-
putationally infeasible if some molecular species have large
populations or there are many reactions in the system. Fur-
ther, it requires the simulation of many realizations of the pro-
cess to compute the probability distribution of the molecular
species.
Several authors proposed accelerated versions of the SSA

to reduce its computation time. In these algorithms, multi-
ple firings of the reactions at each time step are allowed, and
hence the resulting methods are much more efficient. Gille-
spie proposed the Poisson distribution τ -leap method [7], Tian
et al. [12] and Chatterjee et al. [2] presented the binomial τ -
leap methods and Gibson developed the next reaction method
[5]. Recently, Pettigrew et al. [11] proposed multinomial τ -
leap methods, which are an extension of the binomial τ -leap
methods with several improvements.
In this paper we present a new method which provides

stochastic solutions of complex biochemical systems without
requiring the use of Monte Carlo simulations. The biochem-
ical system is a Markovian process, where at each time step
the state of the system is determined from the previous time
step. Therefore, we obtain recursive expressions for the first
two moments of the joint distributions which would update
the system. Thus, rather than generating thousands of real-
izations of the system from which we can construct empirical
distributions, we proceed by directly obtaining the moments
of the joint distribution. The algorithm is scalable with the
sizes of the molecular populations and the number of reac-
tions.
The paper is organized as follows. In the next section we
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provide the problem statement. In Section 3 we present the
philosophy of the recursive method and then explain how we
apply it on a simple example of first-order reversible chemical
reaction. In Section 4 we generalize it on a system composed
of any number of coupled first-order reactions. Simulation
results that show the performance of the method are presented
in Section 5, and concluding remarks are made in Section 6.

2. PROBLEM STATEMENT

Consider a biochemical system composed of N molecular
species which take part in coupled biochemical reactions. We
have knowledge of all the reactions and the associated rate
constants. Further, we know the joint distribution of the ini-
tial number of molecules of the species in the system. Let the
system be represented by the random vector X(t) =

[
X1(t)

X2(t) . . . XN (t)
]
, where Xi(t) represents the number of

molecules of species Si at time instant t. We want to deter-
mine the first two moments of the joint distributions ofX(t).

3. A RECURSIVE METHOD

We obtain recursive expressions for the first two moments of
the distribution of the species, and therefore we refer to our
method as a recursive method (RM). The main idea behind it
is to decompose the studied biochemical system into a set of
simpler systems, find recursive solutions for the simpler sys-
tems and combine them so that they provide a solution for the
complete system. We assume that during short time intervals,
each of the simple systems evolve independently of the others
and that any molecule in the system undergoes at most one re-
action. We illustrate the method with an elementary example.

3.1. Example - First Order Reversible Reaction

Consider the reversible reaction

S1

c12⇀↽
c21

S2 (1)

where S1 and S2 denote species, and c12 and c21 are stochas-
tic rate constants [13]. The reaction simply means that a
molecule of species S1 can become a molecule of species
S2 and vice versa, a molecule of species S2 can become a
molecule of species S1.
The first step of the method is to decompose the system

by using elementary reactions. For the addressed system, it is
clear that the elementary reactions are

S1
c12→ S2 (2)

S2
c21→ S1. (3)

We note that the probability that a molecule of S1 converts to
a molecule of S2 in some time intervalΔt is given by

p12 = 1 − e−c12Δt.

The expression for the probability that a molecule of S2 be-
comes a molecule of S1 is analogous.
Suppose next that X1(t) and X2(t) are the number of S1

and S2 molecules at time t, respectively. Suppose also that
μ1(t) and μ2(t) are the means and σ2

1(t) and σ2
2(t) are the

variances of the number of S1 and S2 molecules at time t.
Here we note that the covariance of S1 and S2 in this example
is−σ1(t)σ2(t). We now want to update these means and vari-
ances to μ1(t+Δt), μ2(t+Δt), σ2

1(t+Δt), and σ2
2(t+Δt).

To that end, we first find the conditional means and variances,
and then integrate out the conditioning variables. The condi-
tioning variables are the number of molecular species at time
t.
In our work we use the analytical results reviewed by Mc-

Quarrie in [10]. For example, by summing up the contribu-
tions from (2) and (3), we obtain the following expression for
the conditional expectations ofX1(t + Δt) andX2

1 (t + Δt):

E (X1(t + Δt) |X1(t), X2(t)) = X1(t) e−c12Δt

+ X2(t)
(
1 − e−c21Δt

)
(4)

and
E

(
X2

1 (t + Δt) |X1(t), X2(t)
)

=

X1(t) e−c12Δt
(
1 − e−c12Δt

)
+ X2(t) e−c21Δt

(
1 − e−c21Δt

)
+ E2 (X1(t + Δt) |X1(t), X2(t)) . (5)

After integrating the above conditionals over the conditioning
variables, we obtain the mean and the variance of the number
of S1 molecules

μ1(t + Δt) = μ1(t) e−c12Δt + μ2(t)
(
1 − e−c21Δt

)
(6)

and

σ2
1(t + Δt) = E(X2

1 (t + Δt)) − μ2
1(t + Δt)

= μ1(t) e−c12Δt
(
1 − e−c12Δt

)
+ μ2(t) e−c21Δt

(
1 − e−c21Δt

)
+ σ2

1(t)
(
e−c12Δt

)2
+ σ2

2(t)
(
1 − e−c21Δt

)2

− 2σ1(t)σ2(t) e−c12Δt
(
1 − e−c21Δt

)
. (7)

Similar expressions can be obtained for the mean and variance
of the number of S2 molecules.

4. A RECURSIVE METHOD - GENERAL
EXPRESSION

Next, we consider a spatially homogeneous system, where
the molecules interact through first-order reactions. Let there
be N molecular species

(
S1, S2, . . . , SN

)
, and as before, let

X(t) describe the state of the system at time t. Let pji be
the transition probability from species j to species i. We have
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the following expressions for the conditional expectations for
Xi(t + Δt) and X2

i (t + Δt):

E (Xi(t + Δt) |X1(t), . . . , XN (t)) =
N∑

j=1

Xj(t) pji (8)

E
(
X2

i (t + Δt) |X1(t), . . . , XN (t)
)

=
N∑

j=1

Xj(t) pji (1 − pji)

+ E2 (Xi(t + Δt) |X1(t), . . . , XN (t)) (9)

In the above expressions, the transition probabilities pji , for

the reaction Sj

cji→ Si, in the time intervalΔt are given by

pji =
cji

cj
(1 − e−cjΔt), j �= i (10a)

pjj = e−cjΔt (10b)

where

cj =
N∑

i=1

cji. (11)

Again, after integrating the expressions in (8) and (9) over
the conditioning variables we obtain the mean and the vari-
ance of the number of Si molecules,

μi(t + Δt) =
N∑

j=1

μj(t) pji (12)

σ2
i (t + Δt) =

N∑
j=1

μj(t) pji (1 − pji) +

N∑
j=1

σ2
j (t) p2

ji + 2
N∑

j=1
j �=i

ρij(t)σi(t)σj(t)pji pii (13)

where ρij(t) is the correlation coefficient ofXi(t) andXj(t).
This coefficient was present in (7) too, and it had a value equal
to −1. In the next subsection, we describe how we compute
the correlation coefficient.

4.1. Computing the correlation coefficient

Given any two molecules Si and Sj , we say that they are
linked if pij and/or pji is different from zero. We define the
sets Ci and Cj as sets with elements that represent molecules
that are linked to Si and Sj , respectively, but excluding Si

and Sj . If both Ci and Cj are empty sets, as in the reac-
tion S1 ⇀↽ S2, then ρij(t) = −1. As described by Zhang
et al. [14], if a system starts with a single source initially1,

1All the species populations have zero initial values except for one of
them which represents a source.

the joint distribution at a later time is multinomial, and if a
system starts with multiple sources, the joint distributions are
convolutions of multinomials. Here we use this fact to obtain
expressions for ρij(t) with one source. The method can be
generalized for more than one source and the expressions for
such scenarios will be presented elsewhere.
With a single source, the marginal distribution p(xi(t),

xj(t)) of any two species is trinomial. We used the moment
generating functions to obtain the following expression for
the correlation coefficient:

ρij(t) = −
√

πi(t)πj(t)
(1 − πi(t))(1 − πj(t))

(14)

where πi(t) and πj(t) are the probabilities of being in states i
and j at time t, respectively. These probabilities are approxi-
mately given by

πi(t) =
Xi(t)
XT (t)

(15)

where XT (t) is the total molecular population, i.e.,

XT (t) = XT (0) =
N∑

j=1

Xj(0). (16)

Note that (14) is valid for the case of a single source. If there
are two or more sources, ρij(t) has different forms.

5. SIMULATION RESULTS

In this section we present results obtained by the proposed
method, and we compare it with the SSA method. Consider
the reaction

S1

c12⇀↽
c21

S2

c23⇀↽
c32

S3. (17)

The parameters were X1(t = 0) = 100, X2(t = 0) = 0,
X3(t = 0) = 10000, c12 = 0.02s−1, c21 = 0.01s−1, c23 =
0.04s−1, c32 = 0.01s−1, andΔt = 0.1s. We applied the SSA
method and simulated 4000 realizations, which were used for
constructing empirical distributions. Fig. 1 shows the results
of the obtained distributions for the three species at t = 10s.
The two methods are in very good agreement.
We also compared the computing times of SSA and our

method. The simulation times were compared on a 2.8 GHz
Pentium machine and we found that our method provides re-
sults below 0.01s regardless of the sizes of the populations,
whereas SSA needed several minutes. The advantage of our
method in computing time will be even more impressive if the
number of molecules and/or the number of reactions in the
system increases. This advantage can also be observed when
the method is compared to the faster τ -leap class of methods
[2], [11], [12].
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Fig. 1. Comparison of results between the RM (solid line)
and the SSA (noisy plot) methods, for the reaction in equation
(17). The plot shows the distribution of the number of S1, S2

and S3 molecules at t = 10s. The used parameters are given
in Section 5.

6. CONCLUSION

All of the existing stochastic approaches to simulation of com-
plex chemical systems are based on Monte Carlo methods.
The advantage of the Monte Carlo methods is that SSA is
an exact method and this and some of the accelerated ver-
sions of the SSA are straightforward to implement. However,
the computation times for these methods can be prohibitively
long for large systems. In this paper we propose a recursive
mechanism for computing the first two moments of the joint
distributions. Simulation results were presented for a few
first-order systems. We made also comparisons with existing
methods and found that the proposed method yields accurate
results with significant savings in computer time. The goal is
to extend the recursive method to second order systems, and
develop a general recipe which would facilitate its implemen-
tation.
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