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ABSTRACT

This paper presents new filter bank design methods for sub-

band adaptive beamforming. In this work, we design analgsis
synthesis prototypes for modulated filter banks so as tomine
each aliasing term individually. We then drive ttaal response
error to null by constraining these prototypes to Ngquist(\/)
filters. Thereafter those modulated filter banks are appied
speech separation system which extracts a target speetl. slg
our system, speech signals are first transformed into thbasub
domain with our filter banks, and the subband componentshare t
processed with a beamforming algorithm. Following beamfog,
post-filtering and binary masking are further performeddmove
residual noises.

We show that our filter banks can suppressrdsdual aliasing

tion of theresponse erroandaliasing distortion The filter banks
proposed in [2] are referred as de Haan filter banks here.

In this work, we drive the response error defined in [2] to byl
constraining the analysis and synthesis prototypes téylogiist(\/)
filters [3, §4.6.1]. Thereafter, the minimization of the aliasing dis-
tortions is shown to reduce to the solution of an eigenvatoblpm
in the case of the analysis prototype, and to the solution séta
of linear equations in the case of the synthesis prototype.alsb
discuss the performance limitation of our filter banks dueumer-
ical problems caused by singular matrices, and proposeteimaie
solution for the special case which can eliminate not onby tib+
tal response error but also residual aliasing distortiomgetely.
The filter banks proposed here are appliednioimum mutual in-
formation(MMI) beamforming where thactive weight vectorare
estimated so that mutual information of two beamformingats is

distortion more than conventional ones. Furthermore, we demonminimized [4]. After that, the separated speech is furthecgssed

strate the effectiveness of our design techniques throwsgt af au-
tomatic speech recognition experiments on the multi-cebspeech
data from thePASCAL Speech Separation Challengehe exper-
imental results prove that our beamforming system with tiee p
posed filter banks achieves the best recognition perfore)an89.6

with Zelinski post-filtering and binary masking [5] in ordey re-
move diffuse noises and a residual interference signal.

We show the effectiveness of our methods through speech+eco

nition experiments on the far-field speech data from PASCAL
Speech Separation Challengehe data were recorded in a reverber-

% word error rate (WER), with half the amount of computatidn o ant room, not artificially convoluted with measured room irnsg

that of the conventional filter banks while the perfect restorction
filter banks provided a 44.4 % WER.

Index Terms— filter bank design, subband processing, beam-

forming, speech recognition

1. INTRODUCTION

There has been great interest in subband adaptive progesgsiti-
cations. Subband adaptive filtering can reduce the conipngat
complexity associated with time domain adaptive filtersiamgrove
the convergence property in estimating filter coefficiedis How-
ever, the filter bank design for adaptive filtering poses lemis not
encountered in more traditional applications such as $peeding.
In [2], de Haan et al. noted that perfect reconstruction (FIERY
banks were not suitable for beamforming applications bse&R is
achieved through alias cancellation §3], which can reconstruct an
input signal correctly only if the outputs of the individualbbands

arenot subject to arbitrary magnitude scaling and phase shiftey Th

also proposed a method to design analysis and synthesatypes
for modulated filter banks so as to minimize the weighted daeb
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responses and the position of speaker’s head varies assisgbak-
ing volume.

The balance of this work is organized as follows. In Sectipn 2
we review the definition of a modulated filter bank. Sectioro8-c
siders the design of suitable analysis and synthesis ppestfor
the modulated filter banks. In particular, Sections 3.1 a@d8efly
present the design methods of [2] for prototypes, and thew siow
slight modifications of those techniques can produce pypest with
zero response error and minimal aliasing distortions. IctiSe 4,
we first compare the residual aliasing distortion of our rodttvith
de Haan filter banks. We then describe the configurationgfeech
recognition experiments and compare our design technidfhetivat
originally proposed in [2] as well as the popular paraugif@R de-
sign. Finally, in Section 5 we present our conclusions aadggfor
future work.

2. MODULATED FILTER BANKS

Figure 1 shows a schematic ofreodulated filter bankvith A sub-
bandsand adecimation factoof D.

Following [2], we define the impulse responges] and g[n]
for analysis and synthesis prototypes respectively, aptess those
modulated versions according to

hln] = K] Wi™ < Hu(z) = H(zWD)
gmln] = g Wy ™" & Gm(z) = G(zWr)
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Fig. 1. Schematic of a modulated filter bank.

whereWy; = e~727/M denotes thé\/-th root of unity.

As indicated in Figure 1, the input spectruli\ z) is first pro-
cessed with analysis filtedd,,, (z). Then the decimators expand the
filtered signals/,, (z). The decimated signal ., (z) consists of the
sum of a stretched output of the-th filter bank andD — 1 aliasing
terms. At this point, the “fixed” subband weighfs, can be applied

to the decimated signalX,,, (z). The expanders then compress the
In the last step, the compressed signals

weighted signald’;,, (z).
Um(z) are processed with the synthesis filtéfs,(z) in order to
suppress the spectral images created by expanders, andtpugso
of the synthesis filters are summed together.

Upon defining
1 . m
A a(2) 5 P HGWRWE) G(=Win), ?)

the relationship between the input and output signals camrieen
as D—1
Y(2) =) Aa(2) X(:Wp) )
d=0

M—-1

Aq(z) = Z Am,a(z).

where

©®)

The transfer functiom(z) produces the desired signal, while the
remaining transfer function§A4(z)} ford = 1,...,D — 1 give
rise to the residual aliasing in the output signal.

3. PROTOTYPE DESIGN

3.1. Analysis Prototype Design

In order to design the analysis prototypé:|, de Haanet al. [2]
define the objective function

€h = an + fn (6)
where thepassband response erres
Wp . .
an = = H('Y) —e 79| dw, @)
pr —wp
and theinband-aliasing distortions given by
1 x D=1 ) 5
jw /D d
bh=gr | ; (H(eﬂ WD)‘ dw. @)

In (7) thedesired filter bank responsmrresponds to a pure delay of
T Samples.

Defining h [R[0] h[1] ---h[Ln—1]]", de Haanet
al. [2] then demonstrate that the passband response error can
expressed as

)

_ }T

an =h"Ah —2n"b +1
where the components & andb can be expressed as

sinw,(j = )

sin(wp (T — 1))
wp(j — 1) .

A onlr =)

andb; =

The inband-aliasing term (8) can be expressed as
Bn =h"Ch
where the components @ can then be expressed as
ol — ] sin (2452
TG

(10)

%)
and oo
pln]=D Z d[n — kD] — 1.

k=—oc0
Combining all terms above, they then seek to minimize the ob-
jective function

eh=0an+ B =h"(A+Ch—-2h"b+1 (12)
Nyquist(M) Filters

The impulse response of ldyquist(\/) or M-th band filter [3,
84.6.1] satisfies

(&
0,

n=mq

12
otherwise (12)

h[Mn] = {

If H(z) is the Nyquist(/) filter, then the output of analysis filter
bank would be equivalent to the input delayedsby M samples;
see McDonough et al. [6] for the proof.

Notice that (12) represents a much stronger condition than t
aimed at by the minimization of (7), in that (12) implies the r
sponse error will vanish, not just for the pass band of a sififjer,
but for the entire working spectrum, including the tramsitbands
between the passbands of adjacent filters. Hence, we refilace
term ay, in the optimization criterion (6) with a constraint of the
form (12), then minimize the inband-aliasing distortiorbjget to
this constraint. The inband-aliasing distortion reducdd.0), whose
optimization clearly admits the trivial solutidn = 0. To exclude
this solution, we impose the additional constradifth = 1, which
is readily achieved through the methodwfdetermined Lagrange
multipliers We posit the modified objective function

f(h) =h"Ch+A(h"h - 1) (13)

where )\ is aLagrange multiplier Then, by solvingCh = —A\h,
we can find the optimal prototypl. Clearly h is an eigenvector
of C. Moreover, in order to ensurk minimizes (10), it must be
the eigenvector associated with th@allesteigenvalue ofC. Note
that, in order to ensure that satisfies (12), we must delete those
rows and columns o€ corresponding to the componentstothat
are identically zero. We then solve the eigenvalue prob2é) for
the remaining components &f, and finally reassemble the com-
plete prototype by appropriately concatenating the zedanan-zero
components. This is similar to the construction of éigenfilterde-
scribed in [3,84.6.1].

3.2. Synthesis Prototype Design

In order to design the synthesis prototype, in [2], de Haal. g¢bke
as an objective function

eg(h) = 7g(h) + dg(h) (14)
b
w?lere thetotal response errois defined as
™ . . 2
~e(h) = QL / Ao(e") —e=|" g, (15)
i —Tr

7r is the total analysis-synthesis filter bank delay andrésédual
aliasing distortionis
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Am’d(ew)‘ dw.

(16)

Through manipulations similar to those used in derivingothadratic
objective criterion for the analysis filter bank, it can bewh that
ve(h) =g Bg —2g"f +1. 17)
The components di: andf are given by
M2

Ei’j = ﬁ

> W[kM —ih[kM —j] and f; = %h[ﬁ —i.

k=—o00

The quadratic form for the residual aliasing distortion is

Jg(h) = g"Pg (18)
where the components &f are given by
M . o
Pij =13 > B+ R+ il - ).

l=—o0
In [2], de Haan et al. introduce a weighting factoto emphasize
either the total response errdr € v < 1) or residual aliasing dis-
tortion (v > 1):

cg(h) = 7g(h) + vig(h) =g" (E+vP)g —2g" f+1 (19)

Nyquist(M) Constraint

As with the analysis prototype, we impose the Nyquisj(con-
straint on thecomplete analysis-synthesis prototyjhex g)[n] such

that
(h* g)[Mn] = {

in which case the total response error (15) must be idehtizalo.
Subject to this constraint, we minimize the residual atigsiistor-
tion (19). Satisfaction of (20) clearly reduces to a setwédr con-
straints of the form

c, m=mgq

20
0, otherwise (20)

H'g=c¢ (21)

where
H=[h_m:1,....,ho,... ., hpm 1], (22)
c=1[0,...,¢,...,0]", (23)

andhy, is obtained by shifting a time-reversed versiorhoby kM
samples and padding with zeros as needed.

—4--Haan FB (v=1.0) - - Haan FB (v=100.0) —&— Nyquist(M) FB‘

Residual aliasing distortion (dB)

Decimation factor D

Fig. 2. Residual aliasing distortiog (h) for decimation factorD,
which was calculated with the number of subbands- 512 and the
filter length L;, = 1024. The values fob < 64 were obtained with
the alternate method.

prototype design, we can also erase residual aliasingrtstq18)
in a similar manner. Defining the nullspace®to beP™“!! we can
express the synthesis prototyge= P"*'y. Then by substituting

into (21), we h
into (21), we have y = (HTP™!)*c 26)

where ()" indicates the peseudoinverse (©f. If the number of
column vectors oP™*! > 2 —1, we can find a synthesis prototype
g = P™!y with zero total response error and residual aliasing
distortion. In practice, when the inband-aliasing distortis very
small,P becomegsomputationallysingular.

4. EXPERIMENTS

The residual aliasing distortion indicates how small theerfibank
can keep the total response error even if the PR property-is de
stroyed by arbitrary magnitude scaling and phase shiftgurgi2
presents the residual aliasing distortions from (18), witss Haan
filter banks are calculated with weighting factoe 1.0 and100.0,
respectively. It is clear from Figure 2 that the proposeerfiianks
can provide better suppression performance for aliasing.

We performed far-field automatic speech recognition (ASR) e
periments on development data from BARSCAL Speech Separation
Challenge(SSC); see Lincolmt al.[7] for a description of the data

We can again resort to the method of undetermined Lagrangeollection apparatus. Prior to beamforming, we first estédahe

multipliers for this problem and obtain a solution of a syedis pro-
totype: .
g=—P'H (HTP’lH) c. (24)

3.3. Alternate method for a special case

speaker’s position with th@rion source tracking system [8]. In ad-
dition to the speaker’s position, Orion is also capable ¢édrining
when each speaker is active. This information is useful peaker
adaptation, given that utterances spoken by one speakeroften

much longer than those spoken by the other. Based on the aver-

age speaker position estimated for each utterance, a beaerfovas

The optimal prototypes can be obtained by the methods mretio  constructed. The active weights were estimated so as teatie
above if matrice<C andP are not singular. However, the matrices Minimum mutual information (MMI) of the outputs from the lea

are often singular when decimation factoris small.

If C is singular, we can consider its nullspa&®,.;;, which
consists of column vectokg € R"™ : Cq = 0. Obviously, inband-
aliasing distortion (10) can be driven to null by an analysisto-
type which is represented as a linear combination of basékeof
nullspaceC,,..;; x. We can then use the free parametef®r min-

formers [4]. In this work, we assumed that subband snapshets
Gaussian-distributed. In addition to MMI beamforming, idski
post-filtering and binary masking [5] were performed.

We did four decoding passes on the waveforms obtained with
the beamforming algorithms described above. Each passcofide
ing used a different acoustic model or speaker adaptatibaense.

imizing passband response error (9). Such a solution canxbe eSpeaker adaptation parameters were estimated using tielater

pressed as
h = Crutt(CruAC,uu) "Crhuub (25)

where rows and columns & ,...;;, A andb corresponding to the
components of h that are identically zero are deleted, laigire-

tices generated during the prior pass. The detail of thecbpezog-

nizer is presented in [9].

We first conducted speech recognition experiments on speech

separated with MMI beamforming only and investigated fotim
ods : (1) normal frequency domain processing with a FFT [(@)],

assembled so as to keep the Nyquigj(constraint. For the synthesis cosine modulated filter bank [3, 6], which yields PR undetiropt



Table 1. WERs without post-filtering for every filter bank design
algorithm after every decoding passes.

Filter bank Pass (WER)
1 2 3 4
FFT 88.5| 71.1 | 58.8 | 55.5
PR 87.7| 65.2 | 54.0 | 50.7
De Haan || 88.7 | 68.2 | 56.1 | 53.5
Nyquist(M) || 88.5| 67.0 | 55.6 | 52.5

Table 2. WERs with post-filtering and binary masking for every
filter bank design algorithm after every decoding passes ReV&f
the Nyquist(/) FB with M = 512 & D = 64 were obtained with
the alternate method.

Filter bank || Parameters Pass (WER)
M D 1 2 3 4
PR 64 - 83.7| 615 | 475 | 44.7
512 | - 84.6 | 60.5| 47.6 | 44.4
De Haan 64 | 32 | 824 | 59.2 | 46.2 | 43.3
512 | 256 | 83.9| 59.1 | 43.2| 41.3
512 | 128 | 81.6 | 58.9 | 43.2 | 40.3
512 | 64 | 82.7| 57.7 | 42.7 | 39.6
Nyquist(M) || 64 | 32 | 80.7 | 57.0 | 44.3 | 42.0
512 | 256 | 84.1 | 58.6 | 43.4 | 40.6
512 | 128 | 81.8 | 54.9 | 42.2 | 39.6
512 | 64 | 81.4| 56.5| 42.6 | 40.3

conditions, (3) de Haan filter bank, and (4) Nyquist(M) filbemks
proposed here. Table 1 shows the word error rates (WERsYyéoy e
filter bank when we set parameters for each filter bank to ke
best recognition performance. MMI beamforming with the Reffi
banks provided the best recognition performance whenffitesing
was not applied. Although it certainly scaled magnitudesshifted
phases of input subband components, we didn’t observegshias-
ing noises. We consider that MMI beamforming with a Gausagn
sumption can estimate active weight vectors while keepliagiag
cancellation. On the other hand, de Haan filter banks haveotak
response error which could deteriorate the recognitiofopaance.
FFT analysis achieved significantly worse performance tibthe
subband processing methods.

Finally we ran recognition experiments on speech enhandéd w
post-filtering and binary masking following MMI beamfornginin
that case, the PR property was not kept because of the rapidjeh
of filter weights. We observed the aliasing distortions wtiePR
filter banks were used. In contrast, de Haan and the propdsed fi
banks can suppress such aliasing noises because thosediites
are designed so as to minimize aliasing terms individudigpble 2
shows the WERSs for each filter bank with different numbersubf s
bandsM and decimation factor®. From Table 2, we can see that
the systems equipped with de Haan and Nyquist(M) filter baaks
reduce the absolute WER by about 5% compared to those with t
PR filter banks. This proves that the PR filter bank is not bletéor
adaptive processing. It is also clear from Table 2 that tlp@sed
method achieved a bigger WER reduction than de Haan'’s #hgori
In particular, the improvements of the recognition perfante are
significant withM = 64 since differences of the residual aliasing and

heoy

response errors between the Nyquist(M) and de Haan filtdshane
larger than those with/ = 512. The proposed filter banks achieved
the best recognition performance, WER 39.6 % with the nurober
subbands\/ = 512 and decimation factab = 128. On the other
hand, de Haan filter banks provided the same number With 512
andD = 64. Therefore, our method can be thought of as halving the
computational cost of that of de Haan.

5. CONCLUSIONS

In this work, we have proposed a new design method for filtekba
that is suitable for adaptive processing. We have demdasdtithe
effectiveness of our design techniques through a set ofnatto
speech recognition experiments on the multi-channel $peata
from the PASCAL Speech Separation Challeng&he proposed
method achieved the smallest WER (39.6 %) with half as much
computational costs as de Haan filter banks, while the PR filte
provided a 44.4 % WER.
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