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ABSTRACT

Modulation forensics is to detect the modulation type in wire-
less communications without any prior information. It finds both
military and civilian applications such as surveillance and cognitive
radio. It is a challenging task, especially in a non-cooperative envi-
ronment, as no prior information on the incoming signal is available
at the receiver. In this paper, we investigate the modulation foren-
sics of linear digital modulations and space-time orthogonal code in
slowly varying frequency-selective fading channels. With unknown
channel vector, and phase distortion at the receive-side, we derive
a composite test consisting second-moment nonlinearity and maxi-
mum likelihood test, and discuss the performance and forensic sys-
tem confidence measure. It is shown that the proposed algorithm
achieves almost perfect identification of the space-time coding, and
high accuracy rate of modulation type detection.

Index Terms— Modulation forensics, security

1. INTRODUCTION

Within the past decades, the explosive development of wireless com-
munication technologies facilitates the transmissions of all kinds of
information over wireless channels: talking to each other, distribut-
ing multimedia, sharing private content, and military command and
control, no matter where the receivers are. However, the broadcast
nature of wireless channel also allows everyone in the network to
listen to others’ signal. From the national security point of view, any
suspicious damaging activities should be under surveillance. Thus,
it’s crucial to develop a forensic scheme that is able to decode the
information from the received signals without any prior information.
The very first step of communication forensic detector is to deter-
mine which kind of modulation is in use.

Modulation forensics detector is not only useful to security or
military purposes, but also to many other civilian applications. For
example, in cognitive radios, detecting the modulation type of the
current user help to identify whether the primary user is presented or
not, yet facilitates spectrum sharing. The more accurate the modula-
tion forensics detector is, the more efficient the cognitive radio.

In the literature, two categories of approaches have been adopted
to tackle this problem: statistics-based pattern recognition approach,
in which features are extracted from the received signal and their
differences are used for decision -making [1, 2, 3]; and the other is
likelihood-based approach, in which the likelihood function (LF) of
the received signal is computed and a likelihood ratio test is used for
detection [4, 5, 6, 7, 8].

The likelihood based method is shown to be asymptotically op-
timal in [4], and the theoretical performance bound is derived un-
der the assumption that all communication parameters are known.
Since the forensic detector is working blindly by listening to others’
signals, the communication parameters are not available in such ap-
plications. Most of the prior works identify the digital modulation
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Fig. 1. Modulation Forensic System Model

types in additive white Gaussian noise channel [5], and some more
recent works move further to flat fading channel[8, 6, 7]. However,
the more realistic frequency-selective fading channels for broadband
wireless communications have not been addressed in prior works.

In addition, most of the prior works only discuss under single in-
put single output (SISO) system, but space-time coding [9] has been
very widely used within the past decade to achieve transmit diver-
sity in wireless communications. For forensic purpose, it’s crucial to
detect whether it is multiple input multiple output (MIMO) system,
how many transmit antennas are used in the transmitter’s side, and
which space-time coding or modulation scheme is employed.

In this paper, we propose a SISO/MIMO modulation forensic
detector in frequency-selective fading channel. In Section 2 the sig-
nal model and modulation forensic detector problem formulation are
presented. The forensic detector methodology is proposed in Sec-
tions 3. Simulation results are discussed in Section 4, followed by
conclusions in Section 5.

2. SYSTEM MODEL AND PROBLEM FORMULATION

Figure 1 shows the system model of the forensic detector: the orig-
inal bit stream is modulated and gone through the fading channel.
The input of the modulation forensic detector is the signal directly
received from the receiver antenna.

In SISO system, the received baseband signal sequence at the
output of the matched filter is expressed as

r=Cx(c,s)e’ +n,i=1,..Npoa 1)

where r = [r1,72,...,7x]|T is the vector of samples at the out-
put of equalizer, taken at the symbol rate, with K as the number
of observed symbols, s = [s{? sV .. s%)}T is the transmit-
ted symbol sequence of ith modulation format, n is the estimated
noise vector [10]. We model the fading channel as a M tap linear
filter: ¢ = [c1,c2, ...y CM]T is the channel amplitude vector, 6 is
the channel phase including the carrier phase offset, and Ny,0q is
the number of possible SISO modulation type in our forensic detec-
tor. The AWGN noise components {n*}_, are zero-mean Gaus-

sian distributed, with variance N. The sequence {5,(:)}?:1 is inde-
pendent and identically distributed, with values drawn from a finite

ICASSP 2008



set specific to the ith modulation format, ¢ = 1, ..., Nyyoa. Ck(c,s)
is the first K terms of the convolution of channel vector ¢ and trans-
mitted symbol vector s¥). In this work, linearly digitally modulated
signals are considered.

If the transmitter is using multiple antenna and orthogonal space-
time code, then

J\/[IIWO
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where q is the number of transmit antenna, x' = [:cll, xh, ..., x%} is
the transmitted symbol vector at antenna [ based on the space-time
coding matrix. ¢' = [c}, ¢}, ..., ¢h] is the channel amplitude vector,
and @' is the phase distortion between transmit antenna [ and the
receive antenna. Thus, start from the baseband signal of one receive
antenna of the modulation forensic detector, the first question is how
to distinguish the MIMO system with the SISO one. And next, if
there are multiple transmit antennas, which orthogonal space-time
code is used? If the system is SISO, how to tell the modulation
scheme?

3. FORENSIC DETECTOR

To remove the channel effect, the first step of the forensic detector is
to perform SISO blind equalization [11]. Then, based on the equal-
ized received baseband signal, in the following section, we’ll discuss
how the modulation forensic detector identify number of transmit
antennas and the space-time codec.

3.1. MIMO/SISO Identification

After equalization, (1) becomes:
v =e%s® 4+ n 3)
and it’s easy to show that (2) becomes:

MIMO' MIMO
r = D(ce,r

q
9(1)
)= :CK(g(l)x(”)eJ" +n' @)
=1

Where c. is the estimated channel amplitude vector by the blind
equalizer, D is the deconvolution operation, and every gg;), 1 <
| < g, is a filter satisfies:
convolution(ce, guy) = d 1<i<gq %)
With perfect equalizer, n’ is a Gaussian random vector.
To identify MIMO systems, we introduce the second moment
test: let ., , ,
M(d) = E[lerdil] - E[7’12}E[7“d2+1] (6)

if the system is SISO, that is, 7’ as in (3), because every symbol
is independent,
E[r2r2,) = E[r?|Er2,] Vd<K )
,thus M(d)=0 Vd < K.
If the transmitter side is using p X ¢ space-time diagonal code,
then M(d) # 0 V1 < d < ¢, and M(d) =~ 0, otherwise. To illustrate
this, take the 2-by-2 orthogonal space-time code as an example:

Si Sz :| (8)
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The second moment test M(1) is:
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(901, (0)(53) e + gioy (0)(s7) e ™27 )
+O(29<2)79<22)7 .
= —4g(1y(0)g(2)(0)|s1]|s2]” + O(g(2)» 92y, ®)
~  —4g3)(0)gi) (0)]s1]*[s2]® # 0 ©)

Where O(g(2), g(2), ) is the tail term corresponding to the imper-
fect channel amplitude estimation.

Thus, by performing the second-moment test, we can easily tell
how many transmit antennas are used.

After determining the space domain codeword length, we need
to determine the time domain codeword length, and since to this
stage we know the number of transmit antennas, we can perform
MIMO blind equalization [12] to improve our estimation of { M (d) }4_,
in (6). To achieve full diversity and maintain equal energy for every
symbol, given the space domain codeword length ¢, there are only
a few possibilities of space-time code matrix and every matrix has
unique formulation of {M (d)}%_,. Thus, we construct a support
vector machine (SVM) classifier usmg {M(d)}i_, calculated from
the received signals r as the input feature to determme the time do-
main codeword length and the space-time code matrix.

Once we have the space-time code matrix, we can decode the re-
ceived baseband signals into symbol sequence s\, and perform the
same modulation detection as SISO system in the following section.

M(1) =

3.2. SISO Modulation Detector

The SISO modulation forensic detector, with the likelihood-based
approach, is formulated as a multiple composite hypothesis testing
problem [13]. Under hypothesis H;, meaning the ith modulation was
transmitted,where ¢ = 1, ..., Ninod, the likelihood function can be
computed by estimating the unknown parameter 6. By assuming that
the equalized received symbols are statistically independent, under
hypothesis H; ,the conditional likelihood function is given by

K

DK 1 1 i _(i
PN, 0 =TT exol= 51k — ¢s571°)
k=1

1 1 _—
= WCXP{—WHF' — %"} (10)

the likelihood function is computed by averaging over the unknown
signal constellation points {s,(:) },{.(:1 and replacing the unknown phase

distortion with its respective estimate. Thus, the likelihood function
under the ith hypothesis can be written as

LFO() = E o @071 an

where I/ [-] is the expectation with respect to the unknown

ol 1L, N
transmitted symbol constellation points and 6 is the unknown phase
distortion estimates under the ith hypothesis H;.

The final decision of modulation scheme i is made based on
maximum likelihood criteria, that is, 7 satisfies:

i =arg _ max LFD (") (12)

=1,.. mod
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Fig. 2. Overall modulation forensic detector scheme

Since the likelihood function in (11) is computed by using max-
imum likelihood estimate of phase distortion, 6 should satisfies:

af(r'|{st" 1, 0)
*ﬂ lo—gy =0 (13)

By solving (13), we show that
: ()H
a6 _ ] S r
0 _7§IH<I'HS(7‘.)) (14)

3.3. Overall Forensic Detector Scheme

Figure 3.3 shows the overall methodology of the modulation foren-
sic detector: upon receiving the baseband signal, first apply the sin-
gle antenna blind equalization, and then identify whether space-time
coding is presented as discussed in Section 3.1: If so, estimate the
coding matrix and transform the received signal to transmitted sym-
bols and then go through the modulation detector; if not, apply the
modulation detector on the equalized signal directly.

The task of the forensic detector is not only to estimate the cor-
rect modulation scheme as precisely as possible, but also gives a
confidence measure to every estimation. We define the detector’s
confidence C measure as follows:

H(LF)

C=1—- ——"
logy Nmod

(15)
where
{LF(I), " LF(NnLod)}
Nmo i
it LE®

is the normalized likelihood vector of all the hypotheses. From the

LF =

(16)

above analysis, when LE is much larger than the other LF s,
the vector LF has a smaller entropy H (LF'), which means one of
the modulation type is much more likely than each other, thus we
are more confident with the detection result. The lower the entropy
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Fig. 3. Performance comparison of likelihood-based algorithms in
frequency-selective Rayleigh fading, when discriminating BPSK,
QPSK,and 8-PSK with K =60 symbols

H(LF), the more confident the forensic detector is. Based on this
idea, the confidence measure C is defined as 1-normalized entropy
of H(LF) as in (??).

4. SIMULATION RESULT

To compare the SISO modulation forensics detector detector’s per-
formance over frequency selective fading channel, besides our foren-
sic detector, the performance of hybrid likelihood ratio test (HLRT)
is also shown [4]. We consider the most commonly used digital mod-
ulations: BPSK, QPSK, 8-PSK and 16-QAM as candidate modula-
tions. Without any loss of generality, normalized constellations are
generated in simulations, i.e.,E[|s§j) |?]=1, thus, the SNR is changed
by varying the noise power only. The pulse shape is rectangular, of
unit amplitude and duration T seconds. The symbol period T is set
to one ms. The average probability of correct classification is used
to evaluate the performance. This is defined as

Ninoa plili)
2 Pe

Pee =
Nnmd

17)

where P/ is the conditional probability of the event that the ith
modulation is received when indeed the ith modulation was origi-
nally transmitted. The number of symbols used to calculate pLi
is 30 and another 30 symbols are used for blind equalization. The
channel is frequency-selective with Rayleigh fading.

Figure 3 shows the modulation detector’s performance under
SISO systems and frequency selective Rayleigh fading channel. It’s
clear that our method is 20 percent outperform HLRT and can achieve
over 95 percent accuracy rate in high SNR with only 60 symbols.
This is because HLRT has the assumption of AWGN channel, which
degrades the performance a lot in selective fading channel, although
HLRT has very high accuracy rate in AWGN channel.

The performance of overall modulation forensic detector as dis-
cussed in Section 3.3 is in Figure 4. Since there’s no prior work on
MIMO forensic detector, Figure 4 only shows our detection accuracy
and Figure 5 plots the output system confidence measure . We test
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Fig. 4. Overall performance of the modulation forensics detector
including BPSK, QPSK, 8PSK, and diagonal space-time code Co,
03’1/2, 0411/2, 04,3/4 with K =100 symbols

over four commonly used orthogonal space-time codes:C2, C3 12,
C4,1/2, C4 374, which maintain same transmit power. We need a lit-
tle bit more symbols to determine the space-time code scheme, so
here we show the result of K = 100 symbols.

Comparing Figure 4 and Figure 3, one can find that there is
just a 2 percent performance derations by including the MIMO sys-
tem identification, which means our space-time matrix estimation
method has similar performance with the optimal one. And, the per-
formance of MIMO system identification rarely degrades with SNR,
because our method is based on the transmit symbols’ orthogonality,
which is independent of SNR. Also, the performances in high SNR
begin the same also implies that increasing the number of test sym-
bols from 60 to 100 doesn’t help much in detection, which means
our likelihood-based test can work well with short symbol length
60. This feature is very important for forensics purpose, since the
shorter the delay, the more the information.

Although the modulation forensics detector makes some error
in low SNR (SNR< 10 dB), the corresponding output system confi-
dence measure is also low as in Figure 5. Which means the mod-
ulation forensic detector still works well in low SNR: the forensic
detector is very uncertain about the answer when making errors.

5. CONCLUSION

In this paper, we proposed a composite likelihood ratio and second
moment test for MIMO/SISO digital linear modulation forensics de-
tection in frequency-selective fading channels, with unknown chan-
nel amplitude vector and phase distortion. The overall modulation
forensics detector achieves very high detection accuracy, which ap-
proaches to 1 in SNR>15 dB, in fading channel with only 60 sym-
bols. And the simulation results shows that the proposed space-time
orthogonal coding identification base on second-moment nonlinear-
ity test is nearly perfect.
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