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ABSTRACT opportunities. This decision process can be enhanced by tak
. . ing into account any available statistical information atibe
The design of medium access control protocols for a cognizrimary traffic. For example, with a single cognitive user ca
tive user wishing to opportunistically exploit frequen@ntals _pable of accessing (sensing) only one channel at a time, the

within parts of the radio spectrum having multiple bands i, 5p1em becomes trivial if the probability that each chdise
considered. In the scenario under consideration, the-ava

- . . g ree is knowra priori. In this case, the optimal rule is for the
ability probability of each channel is unknowrpriori to the  qnjtive user to access the channel with the highest pibbab
cognitive user. Hence efficient medium access strategiss My, of heing free in all time slots. However, such time-vanyi
strike a balance between exploring the availability of ¢les

I S - X traffic information is typically not available to the cogué
and exploiting the opportunities identified thus far. Usig sersa priori. The need to learn this information on-line

sequential design approach, an optimal medium access str@fgates a fundamental tradeoff between exploitation and ex
egy is derived. To avoid the prohibitive computational com-y|5ation, Exploitation refers to the short-term gain iéeg

plexity of this optimal strategy, a low complexity asympiot rom accessing the channel with the estimated highest proba

cally optimal strategy is also developed. The proposed strayjjin, of heing free (based on the results of previous semsin
egy does not require any prior statistical knowledge alfwit t yecisions) whereas exploration is the process by which a cog

traffic pattern on the different channels. nitive user learns the statistical behavior of the primaay-t
Index Terms— Cognitive radio, bandit problem, medium fic (by choosing possibly different channels to probe across
access control. t|me_slots). In the presence of multiple cognitive users, th _
medium access algorithm must also account for the competi-
1. INTRODUCTION tion between different users over t_h_e same channel.
In this paper, we develop a unified framework for the de-

As a promising technique to increase spectral efficiency of!9n and analysis of cognitive medium access protocolsan th

overcrowded parts of the radio spectrum, the opportunistiff€Sence of a single cognitive user who can access a single

spectrum access problem has been the focus of significafif@nnel in each time slot. As argued in the sequel, this frame
research activities [1]. The underlying idea is to allow un-work allows for the construction of strategies that strike a

licensed users (i.e., cognitive users) to access the blaila optimal balance between exploration and exploitation. We

spectrum when the licensed users (i.e., primary users)re pderive an optimal sensing rule that maximizes the expected

active. The presence of high priority primary users and th(I,~hr().th.|?jUt dobtﬁined by thﬁ. cr(])ghnitive USEr. Com|l3<ared with a
requirement that the cognitive users should not interfétle w 9€NI€-aided scheme, in which the cognitive user knaps-

them introduce new challenges for protocol design. The-oveC! the primary network traffic information, there is a through-
arching goal of the current work is to develop a unified framePUt 10ss suffered by any medium access strategy. We obtain a

work for the design of efficient, and low complexity, cogwti lower bound on this loss and further construct a linear com-
medium access protocols. ' ’ plexity single index protocol that achieves this lower bdun
The spectral opportunities available to cognitive usees araSymptotically (when the primary traffic behavior changes

by their nature time-varying. To avoid interfering with the SIOW'Y)' Sjmilar approaches have been considered in [3]4hd
but with different emphases.

primary network, cognitive users must first probe to deter- . .
mine whether there are primary activities before transionss We haye also extended our study to networks with mgl_tl-
eg@ cognitive users and networks with more capable cognitiv

Under the assumption that each cognitive user cannot acc ! .
all of the available channels simultaneously, the main tdsk USers, and have developed opt_lm_al strategies for the_se Sce-
i narios. However, due to space limitations, we do not discuss

the medium access protocol is to distributively choose twhic " its h We al th te of its pred
channels each cognitive user should attempt to use in eliffer '€S€ reSUllSNEre. YWe alSo omit the proots o resulls presen
time slots, in order to fully (or maximally) utilize the sgeai " tNiS paper. Interested readers can refer to [5] for detail

' The rest of this paper is organized as follows. Our net-

This research was supported by the National Science Faondatder ~ WOrk model is detailed in Sectidd 2. Sectidn 3 develops and
Grants ANI-03-38807 and CNS-06-25637. analyzes an optimal strategy for the single cognitive user s
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nario. Finally, Sectiohl4 summarizes our conclusions. Intuitively, the cognitive user would like to select the oha
nel with the highest probability of being free in order to ob-
2. NETWORK MODEL tain more transmission opportunities.dfis known then this
problem is trivial: the cognitive user should choose theneha
Flgure[:l shows the channel model of interest. We considaiel i* = argm%ce to sense. The uncertainty éhimposes

ﬁel?sfl%afi/ ?Ttwork]\;:f nggéw%vr?rybgﬂgvséig p%? g : Q;rsl a fundamental tradeoff between exploration, in order tonlea

in the primary network are operated in a synchronous trme- 9, and exploitation, by accessing ihe channel with the highes

slotted fashion. We assume that at each time slot, channefStimated free probability based on current availablernéo
is free with probabilityd;. Let Z;(j) be a random variable lon, as detailed in the following section.

that equalsl if channeli is free at time sloy and equal9)
otherwise. Hence, give}, Z;() is a Bernoulli random vari-
able with distributionhy, (z;(j)) = 6;6(1) + (1 — 6;)6(0),
whered(- ) is a delta function. Furthermore, for a givn=
(01, ,0n), theZ;(j) are independent for eagland;j. We
consider a block varying model in which the value ébis
fixed for a block ofT" time slots and then randomly changes
at the beginning of the next block according to a joint probas
bility density function (pdf)f(8).

3. OPTIMAL MEDIUM ACCESS PROTOCOLS

We start by developing the optimal solution under the ide-
alized assumption thaf(@) is knowna priori by the cog-
nitive user. As we will see, this optimal medium access al-
gorithm suffers from a prohibitive computational comptgxi
that grows exponentially with the block lendgih This mo-
tivates the design of low complexity asymptotically optima
approaches, which we also consider.
=1 =T Our cognitive medium access problem belongs to the class
Channel 1 of bandit problems. In this setting, the decision maker must
Channel 2 H © e ; sequentially choose one process to observe fibm 2 stochas-
¢ * tic processes. These processes usually have parameters tha
.
L 1]

are unknown to the decision maker and, associated with each
observation is a utility function. The objective of the deci

.

channe! N sion maker is to maximize the sum or discounted sum of the
I Ocoupied by the primary users utilities via a strategy that specifies which process to nlese
for every possible history of selections and observatighs.
[ ]  spectrum opportunities comprehensive treatment covering different variants ai-ba
dit problems can be found in [2].
Fig. 1. Channel model. We are now ready to rigorously formulate our problem.

The cognitive user employs a medium access strdtegsich

In our model, the cognitive users attempt to exploit thewill select channel(j) € A to sense at time slgt for any
availability of free channels in the primary network by sens possible causal information pattern obtained through the p
ing the activity at the beginning of each time slot. Our workvious;j — 1 observations¥ (j) = {s(1), zs1)(1), -+ ,s(j —
seeks to characterize efficient strategies for choosingtwhi 1), z,;_1)(j—1)},j > 2,i.e.s(j) = T(f, ¥(j)). Notrce that
channels to sense (access). The challenge here stems frgm 1(j) is the sensing outcome of thé" time slot, in which
the fact that the cognitive users are assumed to be unaware 1§ is the channel being accessed,j I& 1, there is no ac-
6 a priori. We consider two cases in which a cognitive user.;1ulated information, and thus(1) = ¢ ands(1) = I'(f).
either has or does not have prior information about the pdf of,4 utility that the cognitive user obtains by making demisi
6, i.e., f(6). In the scenario presented in this paper, at timey, ;) at time slot; is the number of bits it can transmit at time
slot;, a single cognitive user selects one charffg) € N'to g0 "\yhich isBZs(;)(j). We denote the expected value of
access. If the sensing result shows that chafig) is free, e payoff obtained by a cognitive user who uses strategy
i.e, Zs(j)(j) = 1, the cognitive user can sen@ bits over

. ) > . ; _ as
this channel; otherwise, the cognitive user will wait utti
next time slot and pick a possibly different channel to asces T
Therefore, the total number of bits that the cognitive user i Wr =Ey Z BZs;)(j) ¢ - (1)
able to send over one block (@ftime slots) is j=1
T . .
. We further denot& ™ (f, T') = sup Wr, which is the largest
W =3 BZs;)() C |
= throughput that the cognitive user could obtain when the-spe

tral opportunities are governed lfy6) and the exact value of
It is clear thatWW is a random variable that depends oneach realization o is not knowna priori by the user.
the traffic in the primary network and, more importantly for ~ Each medium access decision made by the cognitive user
us, the medium access protocols employed by the cognitivieas two effects. The first one is the short-term gain, i.e., an
user. Therefore, the overarching goal of this paper is te coimmediate transmission opportunity if the chosen charel i
struct low complexity medium access protocols that maxifound free. The second one is the long-term gain, i.e., the
mizeE{W}. updated statistical information abofitf). This information



will help the cognitive user in making better decisions in fu argmaxV (f2ie 1y 1). Similarly, after solving thel' =

turg lstagets There is ?fn mterelstmg t{?deoﬁ betwe(tar? mﬁ Sr,: problem one can proceed to solve fhe= 3 case. Using this
and long-term gains. If we only want to maximize the shor procedure recursively, we can solve the problem With 1

term gain, We can choose the channel with the h_igh_est ava'g'bservations. Finally, our original problem wiih observa-
ability probability to sense, based on the current inforamat tions is solved as foliows.

This myopic strategy maximally exploits the existing infor
mation. On the other hand, by choosing other channels ta*(f,T) = max/ [BO; +0,V*(fo,=1,T — 1)
sense, we gain statistical information abgig@) which can eN

effectively guide future decisions. This process is tyfijca +(1=0,)V*(fz,=0,T — 1)] £(6)d6.
referred to as exploration, as noted previously.
More specifically, letf’ (@) be the updated pdf after mak- The optimal solution developed above suffers from a pro-

ing j — 1 observations. We begin witfi' (6 ) = f(6). Af-  hibitive computational complexity. In particular, the dim
ter observmgzs(J)( ), we update the pdf using the following sionality of our search dimension grows exponentially with

Bayesian formula. the block lengtHl’. Moreover, one can envision many prac-
f N1 () — 7 (0) tical scenarios in which it would be difficult for the cogni-
LAtz () =1, f77(0) = T0.0)/7(0)a0’ tive user to obtain the prior informatiofi(@). This moti-
. vates our pursuit of low complexity non-parametric proleco
2. 1f 2,5y (j) = 0, FItH0) = (1“’(]—)”]@) which maintain certain optimality properties and do not de-
J(1=6.()17(6)a0 pend onf () explicitly. Hence, in the following, we aim to

The following result characterizes the optimal strategst th develop strategies that depend only on the information ob-
maximizes the average throughput the cognitive user abtairtained through observations

from the network. For a given strategy’, the expected number of bits the
Lemma 1 For any prior pdf f, there exists an optimal strat- cognitive user is able to transmit through a block with given
egyl* to the channel selection proble), andV*(f,T)is  parameter§ is

achievable. Moreovel/* satisfies the following condition:

VA(f,T)= (r{l)ax Ef{BZ H+ Ve (stm’ _1)}7 2 ZBZS(J) ZBZQP“{F =i}

wherefz, , is the conditional distribution updated using the
Bayesian rule described above, as if the cognitive userab®o
s(1) and observeg ;). Also,V* (fZS 1),T — ) is the value
of a bandit problem W|th prior mformatlogfz o and7 —1
sequential observations.
In principle, Lemma&ll provides the solution to problémn (1)

Effectively, it decouples the calculation at each stagel an
hence, allows the use of dynamic programming to solve th8f 6 is known, in which the optimal strategy for the cognitive

problem. The idea is to solve the channel selection probler{S€" is to always choose the channel with the largest availab
with a smaller dimension first and then use backward dedudY probablhty, the loss incurred by is given by

tion to obtain the optimal solution for a problem with a large

dimension. Starting witl’ = 1, the second term inside the L(6;T") ZB% - ZBZG Pr{l’(¥(y)) =i},
expectationin({R) is 0, sincE—1 = 0. Hence, the optimal so- i=

lution is to choose the channghaving the largest{ BZ;},

which can be calculated & {BZ;} = Bf@if(O)de. And Wheredi. = max{6y,---,0y}. We say that a strategy

. _ _ . ; _ is consistent if, for anyd < [0, 1]V, there exists3 < 1
VisL) = %%(Ef{le}' With the solution forl" = 1 at such thatZL(0;T) scales ag)(T”). In the sequel, we use

hand, we can now solve tli€ = 2 case using {2). Atfirst, the following notations 11(N) = w(g2(N)) means that
for every possible choice of(1) and possible observation v > 0,3N,, such thatVN > No,g2(N) < cgi(N); 2)
z4(1), We calculate the updated distributigi, <1> using the g1(n) = O(g2(N)) means thaBic;, c; > 0 and N, such that
Bayesian formula. Next, we calcula¥& (f,_,,,1) (whichis VN > Ny, c1g2(N) < gl(N) < ¢a2g2(N). For example,
equivalent to the” = 1 problem descnbed above). Finally, consider a loyal scheme in which the cognitive user selects
applying [2), we have the following equation for the channekhannel; at the beginning of a block and sticks to it.dif is

Recall thatl'(¥(5)) = ¢ means that, following strategy
I', the cognitive user should choose channiel time slot j,
based on the available informatidt;). Here P (¥ (5)) = i}
is the probability that the cognitive user will choose chelrin
at time slotj, following the strategy’'.

Compared with the idealistic case where the exact value

selection problems witlf" = 2: the largest one amor@yy L(0;T) = 0. On the other hand, if
i} i} 6; is not the largest ond,(6;T") ~ O(T). Hence, this loyal
V(f,2) = I}g}@;/ [BO; + 0;V*(fz=1,1) scheme is not consistent. The following lemma characterize

the fundamental limits of any consistent scheme.

+(1 = 0:;)V"(fzi=0, 1)] f(6)dO.

Hence, in the first step, the cognitive user should chégde =
argriré%(v (f,2) to sense. After observing- ), the cogni- lim inf ( > B Z

tive user hask(1) = {z;-(;)}, and it should choos& (2) = T—o0 AT} 9 ||9 )

Lemma 2 For any0 and any consistent strategy we have

®3)



whereD(6;]|6;) denotes the Kullback-Leibler divergence be-  The intuition behind this strategy is that as longas
tween the two Bernoulli random variables with parametgrs grows as fast a®(InT'), A; converges to the true value of
andd, respectively:D(6;]|6;) = 6; In (@)Jr(l_e_) In (ﬂ) _ 0; in probability, and the cognitive user will choose the chan-
’ BN ’ 1=00)" nel with the largesf; eventually. The loss a®(In T') comes
om the time spent in sampling the inferior channels in orde
o learn the value of). This price, however, is inevitable as
established in the lower bound of Lemma 2.

Lemmd2 shows that the loss of any consistent strategy scal
at least asv(In7'). An intuitive explanation of this loss is
that we need to spend at le@3fln 7') time slots on sampling , ;
each of the channels with smally, in order to get a reason- _Fmally, we observe that_ the d[fferer}ce betwee_n the my-
ably accurate estimate 6f and hence use it to determine the OPIC rule and the order optimal single index rule is the ad-
channel having the largest to sense. We say that a strategy ditional termy/21n j/Y;(;j) added to the current estimate
T is order optimal ifZL(6; ) ~ O(InT). Roughly speaking, this additional term guarantees encaigh s
Before proceeding to the proposed low complexity orderPling time for each channel, since if we sample charirted
optimal strategy, we first analyze the loss order of someieur SParsely.Y; (j) will be small, which will Increase the proba-
tic strategies which may appear to be reasonable. bility that A; is the largest index. Whelj,(j) scales as T,
The first simple rule is the random strately where, at ~ ¢; will be the dominant term in the inde;, and hence the
each time slot, the cognitive user randomly chooses a channghannel with the largest; will be chosen much more fre-
from the availableV channels. The fraction of time the cog- quently.

nitive user spends on each channel is therefgré, leading 4. CONCLUSIONS
B3 (6:-—0))
to the lossL(0;T',) = —Fx——T1 ~ O(T). This work has developed a unified framework for the design

The second one is the myopic rdlg in which the cogni-  and analysis of cognitive medium access based on the classi-
tive user keeps updatingf (@), and chooses the channel with cal bandit problem. Our formulation highlights the tradeof

the largest value of; = [ 6;f7(6)d6 at each stage. Since between exploration and exploitation in cognitive charseel
there are no convergence guarantees for the myopic rute, thgction. A linear complexity cognitive medium access algo-
is & may never converge t8 due to the lack of sufficiently nthm,_ which is asymptotically optimal as the number of time
many samples for each channel [6], the loss of this myopi€/OtS increases, has also been proposed.
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