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ABSTRACT

The design of medium access control protocols for a cogni-
tive user wishing to opportunistically exploit frequency bands
within parts of the radio spectrum having multiple bands is
considered. In the scenario under consideration, the avail-
ability probability of each channel is unknowna priori to the
cognitive user. Hence efficient medium access strategies must
strike a balance between exploring the availability of channels
and exploiting the opportunities identified thus far. Usinga
sequential design approach, an optimal medium access strat-
egy is derived. To avoid the prohibitive computational com-
plexity of this optimal strategy, a low complexity asymptoti-
cally optimal strategy is also developed. The proposed strat-
egy does not require any prior statistical knowledge about the
traffic pattern on the different channels.

Index Terms— Cognitive radio, bandit problem, medium
access control.

1. INTRODUCTION

As a promising technique to increase spectral efficiency of
overcrowded parts of the radio spectrum, the opportunistic
spectrum access problem has been the focus of significant
research activities [1]. The underlying idea is to allow un-
licensed users (i.e., cognitive users) to access the available
spectrum when the licensed users (i.e., primary users) are not
active. The presence of high priority primary users and the
requirement that the cognitive users should not interfere with
them introduce new challenges for protocol design. The over-
arching goal of the current work is to develop a unified frame-
work for the design of efficient, and low complexity, cognitive
medium access protocols.

The spectral opportunities available to cognitive users are
by their nature time-varying. To avoid interfering with the
primary network, cognitive users must first probe to deter-
mine whether there are primary activities before transmission.
Under the assumption that each cognitive user cannot access
all of the available channels simultaneously, the main taskof
the medium access protocol is to distributively choose which
channels each cognitive user should attempt to use in different
time slots, in order to fully (or maximally) utilize the spectral
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opportunities. This decision process can be enhanced by tak-
ing into account any available statistical information about the
primary traffic. For example, with a single cognitive user ca-
pable of accessing (sensing) only one channel at a time, the
problem becomes trivial if the probability that each channel is
free is knowna priori. In this case, the optimal rule is for the
cognitive user to access the channel with the highest probabil-
ity of being free in all time slots. However, such time-varying
traffic information is typically not available to the cognitive
usersa priori. The need to learn this information on-line
creates a fundamental tradeoff between exploitation and ex-
ploration. Exploitation refers to the short-term gain resulting
from accessing the channel with the estimated highest proba-
bility of being free (based on the results of previous sensing
decisions) whereas exploration is the process by which a cog-
nitive user learns the statistical behavior of the primary traf-
fic (by choosing possibly different channels to probe across
time slots). In the presence of multiple cognitive users, the
medium access algorithm must also account for the competi-
tion between different users over the same channel.

In this paper, we develop a unified framework for the de-
sign and analysis of cognitive medium access protocols in the
presence of a single cognitive user who can access a single
channel in each time slot. As argued in the sequel, this frame-
work allows for the construction of strategies that strike an
optimal balance between exploration and exploitation. We
derive an optimal sensing rule that maximizes the expected
throughput obtained by the cognitive user. Compared with a
genie-aided scheme, in which the cognitive user knowsa pri-
ori the primary network traffic information, there is a through-
put loss suffered by any medium access strategy. We obtain a
lower bound on this loss and further construct a linear com-
plexity single index protocol that achieves this lower bound
asymptotically (when the primary traffic behavior changes
slowly). Similar approaches have been considered in [3] and[4],
but with different emphases.

We have also extended our study to networks with multi-
ple cognitive users and networks with more capable cognitive
users, and have developed optimal strategies for these sce-
narios. However, due to space limitations, we do not discuss
these results here. We also omit the proofs of results presented
in this paper. Interested readers can refer to [5] for details.

The rest of this paper is organized as follows. Our net-
work model is detailed in Section 2. Section 3 develops and
analyzes an optimal strategy for the single cognitive user sce-
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nario. Finally, Section 4 summarizes our conclusions.

2. NETWORK MODEL

Figure 1 shows the channel model of interest. We consider
a primary network consisting ofN non-overlapping chan-
nels,N = {1, · · · , N}, each with bandwidthB. The users
in the primary network are operated in a synchronous time-
slotted fashion. We assume that at each time slot, channeli
is free with probabilityθi. Let Zi(j) be a random variable
that equals1 if channeli is free at time slotj and equals0
otherwise. Hence, givenθi, Zi(j) is a Bernoulli random vari-
able with distributionhθi(zi(j)) = θiδ(1) + (1 − θi)δ(0),
whereδ(·) is a delta function. Furthermore, for a givenθ =
(θ1, · · · , θN ), theZi(j) are independent for eachi andj. We
consider a block varying model in which the value ofθ is
fixed for a block ofT time slots and then randomly changes
at the beginning of the next block according to a joint proba-
bility density function (pdf)f(θ).

Channel 1


Channel 2


Channel N


t=1
 t=T


Occupied by the primary users


Spectrum opportunities


Fig. 1. Channel model.

In our model, the cognitive users attempt to exploit the
availability of free channels in the primary network by sens-
ing the activity at the beginning of each time slot. Our work
seeks to characterize efficient strategies for choosing which
channels to sense (access). The challenge here stems from
the fact that the cognitive users are assumed to be unaware of
θ a priori. We consider two cases in which a cognitive user
either has or does not have prior information about the pdf of
θ, i.e., f(θ). In the scenario presented in this paper, at time
slotj, a single cognitive user selects one channelS(j) ∈ N to
access. If the sensing result shows that channelS(j) is free,
i.e., ZS(j)(j) = 1, the cognitive user can sendB bits over
this channel; otherwise, the cognitive user will wait untilthe
next time slot and pick a possibly different channel to access.
Therefore, the total number of bits that the cognitive user is
able to send over one block (ofT time slots) is

W =

T
∑

j=1

BZS(j)(j).

It is clear thatW is a random variable that depends on
the traffic in the primary network and, more importantly for
us, the medium access protocols employed by the cognitive
user. Therefore, the overarching goal of this paper is to con-
struct low complexity medium access protocols that maxi-
mizeE{W}.

Intuitively, the cognitive user would like to select the chan-
nel with the highest probability of being free in order to ob-
tain more transmission opportunities. Ifθ is known then this
problem is trivial: the cognitive user should choose the chan-
nel i∗ = argmax

i∈N
θi to sense. The uncertainty inθ imposes

a fundamental tradeoff between exploration, in order to learn
θ, and exploitation, by accessing the channel with the highest
estimated free probability based on current available informa-
tion, as detailed in the following section.

3. OPTIMAL MEDIUM ACCESS PROTOCOLS

We start by developing the optimal solution under the ide-
alized assumption thatf(θ) is known a priori by the cog-
nitive user. As we will see, this optimal medium access al-
gorithm suffers from a prohibitive computational complexity
that grows exponentially with the block lengthT . This mo-
tivates the design of low complexity asymptotically optimal
approaches, which we also consider.

Our cognitive medium access problem belongs to the class
of bandit problems. In this setting, the decision maker must
sequentially choose one process to observe fromN ≥ 2 stochas-
tic processes. These processes usually have parameters that
are unknown to the decision maker and, associated with each
observation is a utility function. The objective of the deci-
sion maker is to maximize the sum or discounted sum of the
utilities via a strategy that specifies which process to observe
for every possible history of selections and observations.A
comprehensive treatment covering different variants of ban-
dit problems can be found in [2].

We are now ready to rigorously formulate our problem.
The cognitive user employs a medium access strategyΓ, which
will select channelS(j) ∈ N to sense at time slotj for any
possible causal information pattern obtained through the pre-
viousj − 1 observations:Ψ(j) = {s(1), zs(1)(1), · · · , s(j −
1), zs(j−1)(j−1)}, j ≥ 2, i.e. s(j) = Γ(f,Ψ(j)). Notice that
zs(j)(j) is the sensing outcome of thejth time slot, in which
s(j) is the channel being accessed. Ifj = 1, there is no ac-
cumulated information, and thusΨ(1) = φ ands(1) = Γ(f).
The utility that the cognitive user obtains by making decision
S(j) at time slotj is the number of bits it can transmit at time
slot j, which isBZS(j)(j). We denote the expected value of
the payoff obtained by a cognitive user who uses strategyΓ
as

WΓ = Ef







T
∑

j=1

BZS(j)(j)







. (1)

We further denoteV ∗(f, T ) = sup
Γ

WΓ, which is the largest

throughput that the cognitive user could obtain when the spec-
tral opportunities are governed byf(θ) and the exact value of
each realization ofθ is not knowna priori by the user.

Each medium access decision made by the cognitive user
has two effects. The first one is the short-term gain, i.e., an
immediate transmission opportunity if the chosen channel is
found free. The second one is the long-term gain, i.e., the
updated statistical information aboutf(θ). This information



will help the cognitive user in making better decisions in fu-
ture stages. There is an interesting tradeoff between the short
and long-term gains. If we only want to maximize the short-
term gain, we can choose the channel with the highest avail-
ability probability to sense, based on the current information.
This myopic strategy maximally exploits the existing infor-
mation. On the other hand, by choosing other channels to
sense, we gain statistical information aboutf(θ) which can
effectively guide future decisions. This process is typically
referred to as exploration, as noted previously.

More specifically, letf j(θ) be the updated pdf after mak-
ing j − 1 observations. We begin withf1(θ) = f(θ). Af-
ter observingzs(j)(j), we update the pdf using the following
Bayesian formula.

1. If zs(j)(j) = 1, f j+1(θ) =
θs(j)f

j(θ)
R

θs(j)f
j(θ)dθ

,

2. If zs(j)(j) = 0, f j+1(θ) =
(1−θs(j))fj(θ)

R

(1−θs(j))fj(θ)dθ
.

The following result characterizes the optimal strategy that
maximizes the average throughput the cognitive user obtains
from the network.
Lemma 1 For any prior pdff , there exists an optimal strat-
egyΓ∗ to the channel selection problem(1), andV ∗(f, T ) is
achievable. Moreover,V ∗ satisfies the following condition:

V ∗(f, T ) = max
s(1)∈N

Ef

{

BZs(1) + V ∗
(

fZs(1)
, T − 1

)}

, (2)

wherefZs(1)
is the conditional distribution updated using the

Bayesian rule described above, as if the cognitive user chooses
s(1) and observesZs(1). Also,V ∗

(

fZs(1)
, T − 1

)

is the value
of a bandit problem with prior informationfZs(1)

andT − 1
sequential observations.

In principle, Lemma 1 provides the solution to problem (1).
Effectively, it decouples the calculation at each stage, and
hence, allows the use of dynamic programming to solve the
problem. The idea is to solve the channel selection problem
with a smaller dimension first and then use backward deduc-
tion to obtain the optimal solution for a problem with a larger
dimension. Starting withT = 1, the second term inside the
expectation in (2) is 0, sinceT−1 = 0. Hence, the optimal so-
lution is to choose the channeli having the largestEf{BZi},
which can be calculated asEf{BZi} = B

∫

θif(θ)dθ. And
V ∗(f, 1) = max

i∈N
Ef{BZi}. With the solution forT = 1 at

hand, we can now solve theT = 2 case using (2). At first,
for every possible choice ofs(1) and possible observation
zs(1), we calculate the updated distributionfzs(1) using the
Bayesian formula. Next, we calculateV ∗(fzs(1) , 1) (which is
equivalent to theT = 1 problem described above). Finally,
applying (2), we have the following equation for the channel
selection problems withT = 2:

V ∗(f, 2) = max
i∈N

∫

[Bθi + θiV
∗(fzi=1, 1)

+(1− θi)V
∗(fzi=0, 1)] f(θ)dθ.

Hence, in the first step, the cognitive user should choosei∗(1) =
argmax

i∈N
V ∗(f, 2) to sense. After observingzi∗(1), the cogni-

tive user hasΨ(1) = {zi∗(1)}, and it should choosei∗(2) =

argmax
i∈N

V ∗(fzi∗(1)
, 1). Similarly, after solving theT = 2

problem, one can proceed to solve theT = 3 case. Using this
procedure recursively, we can solve the problem withT − 1
observations. Finally, our original problem withT observa-
tions is solved as follows.

V ∗(f, T ) = max
i∈N

∫

[Bθi + θiV
∗(fzi=1, T − 1)

+(1− θi)V
∗(fzi=0, T − 1)] f(θ)dθ.

The optimal solution developed above suffers from a pro-
hibitive computational complexity. In particular, the dimen-
sionality of our search dimension grows exponentially with
the block lengthT . Moreover, one can envision many prac-
tical scenarios in which it would be difficult for the cogni-
tive user to obtain the prior informationf(θ). This moti-
vates our pursuit of low complexity non-parametric protocols
which maintain certain optimality properties and do not de-
pend onf(θ) explicitly. Hence, in the following, we aim to
develop strategies that depend only on the information ob-
tained through observationsΨ.

For a given strategyΓ, the expected number of bits the
cognitive user is able to transmit through a block with given
parametersθ is

E







T
∑

j=1

BZS(j)(j)







=

T
∑

j=1

B

N
∑

i=1

θiPr{Γ(Ψ(j)) = i} .

Recall thatΓ(Ψ(j)) = i means that, following strategy
Γ, the cognitive user should choose channeli in time slotj,
based on the available informationΨ(j). Here Pr{Γ(Ψ(j)) = i}
is the probability that the cognitive user will choose channel i
at time slotj, following the strategyΓ.

Compared with the idealistic case where the exact value
of θ is known, in which the optimal strategy for the cognitive
user is to always choose the channel with the largest availabil-
ity probability, the loss incurred byΓ is given by

L(θ; Γ) =

T
∑

j=1

Bθi∗ −
T
∑

j=1

B

N
∑

i=1

θiPr{Γ(Ψ(j)) = i} ,

whereθi∗ = max{θ1, · · · , θN}. We say that a strategyΓ
is consistent if, for anyθ ∈ [0, 1]N , there existsβ < 1
such thatL(θ; Γ) scales asO(T β). In the sequel, we use
the following notations 1)g1(N) = ω(g2(N)) means that
∀c > 0, ∃N0, such that∀N > N0, g2(N) < cg1(N); 2)
g1(n) = O(g2(N)) means that∃c1, c2 > 0 andN0, such that
∀N > N0, c1g2(N) ≤ g1(N) ≤ c2g2(N). For example,
consider a loyal scheme in which the cognitive user selects
channeli at the beginning of a block and sticks to it. Ifθi is
the largest one amongθ, L(θ; Γ) = 0. On the other hand, if
θi is not the largest one,L(θ; Γ) ∼ O(T ). Hence, this loyal
scheme is not consistent. The following lemma characterizes
the fundamental limits of any consistent scheme.

Lemma 2 For anyθ and any consistent strategyΓ, we have

lim inf
T→∞

L(θ; Γ)

lnT
≥ B

∑

i∈N\{i∗}

θi∗ − θi
D(θi||θ∗i )

, (3)



whereD(θi||θl) denotes the Kullback-Leibler divergence be-
tween the two Bernoulli random variables with parametersθi

andθl respectively:D(θi||θl) = θi ln
(

θi
θl

)

+(1−θi) ln
(

1−θi
1−θl

)

.

Lemma 2 shows that the loss of any consistent strategy scales
at least asω(lnT ). An intuitive explanation of this loss is
that we need to spend at leastO(lnT ) time slots on sampling
each of the channels with smallerθi, in order to get a reason-
ably accurate estimate ofθ, and hence use it to determine the
channel having the largestθi to sense. We say that a strategy
Γ is order optimal ifL(θ; Γ) ∼ O(ln T ).

Before proceeding to the proposed low complexity order-
optimal strategy, we first analyze the loss order of some heuris-
tic strategies which may appear to be reasonable.

The first simple rule is the random strategyΓr where, at
each time slot, the cognitive user randomly chooses a channel
from the availableN channels. The fraction of time the cog-
nitive user spends on each channel is therefore1/N , leading

to the lossL(θ; Γr) =
B

N
P

i=1

(θi∗−θi)

N
T ∼ O(T ).

The second one is the myopic ruleΓg in which the cogni-
tive user keeps updatingf j(θ), and chooses the channel with
the largest value of̂θi =

∫

θif
j(θ)dθ at each stage. Since

there are no convergence guarantees for the myopic rule, that
is θ̂ may never converge toθ due to the lack of sufficiently
many samples for each channel [6], the loss of this myopic
strategy isO(T ).

The third protocol we consider isstaying with the winner
and switching from the loser ruleΓSW where the cognitive
user randomly chooses a channel in the first time slot. In the
succeeding time-slots 1) if the accessed channel was found to
be free, it will choose the same channel to sense; 2) other-
wise, it will choose one of the remaining channels based on a
certain switching rule.

Lemma 3 No matter what the switching rule is,L(θ; ΓSW ) ∼
O(T ).

There are several strategies that have loss of orderO(ln T ).
We adopt the following linear complexity strategy from [7].

Rule 1 (Order optimal single index strategy)
The cognitive user maintains two vectorsX andY, where

eachXi records the number of time slots in which the cogni-
tive user has sensed channeli to be free, and eachYi records
the number of time slots in which the cognitive user has cho-
sen channeli to sense. The strategy works as follows.

1. Initialization: at the beginning of each block, each chan-
nel is sensed once.

2. After the initialization period, the cognitive user ob-
tains an estimatêθ at the beginning of time slotj, given
by θ̂i(j) = Xi(j)/Yi(j), and assigns an indexΛi(j) =

θ̂i(j)+
√

2 ln j/Yi(j) to theith channel. The cognitive
user chooses the channel with the largest value ofΛi(j)
to sense at time slotj. After each sensing, the cognitive
user updatesX andY.

The intuition behind this strategy is that as long asYi

grows as fast asO(ln T ), Λi converges to the true value of
θi in probability, and the cognitive user will choose the chan-
nel with the largestθi eventually. The loss ofO(ln T ) comes
from the time spent in sampling the inferior channels in order
to learn the value ofθ. This price, however, is inevitable as
established in the lower bound of Lemma 2.

Finally, we observe that the difference between the my-
opic rule and the order optimal single index rule is the ad-
ditional term

√

2 ln j/Yi(j) added to the current estimateθ̂i.
Roughly speaking, this additional term guarantees enough sam-
pling time for each channel, since if we sample channeli too
sparsely,Yi(j) will be small, which will increase the proba-
bility that Λi is the largest index. WhenYi(j) scales aslnT ,
θ̂i will be the dominant term in the indexΛi, and hence the
channel with the largestθi will be chosen much more fre-
quently.

4. CONCLUSIONS

This work has developed a unified framework for the design
and analysis of cognitive medium access based on the classi-
cal bandit problem. Our formulation highlights the tradeoff
between exploration and exploitation in cognitive channelse-
lection. A linear complexity cognitive medium access algo-
rithm, which is asymptotically optimal as the number of time
slots increases, has also been proposed.
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