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Abstract—The paper studies distributed average consensus statistical dither to the sensor datefore quantization. This
in sensor networks, when the sensors exchangguantizeddata results in good statistical properties of the quantization error
at each time step. We show that randomizing the exchanged goqyence, which are exploited in the algorithm. Another key

sensor data by adding a controlled amount of dither results in feat is that the algorith | led f
almost sure (a.s.) convergence of the protocol, if the network €ature Is that the aigorithm uses a properly scaled sequence o

is connected. We explicitly characterize the mean-squared error decreasing link weights, which keep the error resulting from
(with respect to the desired consensus average) and show thatrandomization and quantization uniformly bounded at each
by tuning certain parameters associated with the protocol, the step (to be explained in more detail in the paper.) We use
mean-squared error can be made arbitrarily small. We study eqits from the theory of controlled Markov processes that
the trade-offs between the rate of convergence and the resulting -
mean-squared error. The sensor network topology plays an show that, for a connected network, our algorithm leads to
important role in determining the convergence rate of the almost sure (a.s.) convergence of the sensor states to the same
algorithm. Our approach, based on the convergence of controlled finite random variable. In other words, the sensors asymp-
Markov processes, is very generic and can be applied to many totically reach consensus and we explicitly characterize the
other situations of imperfect communication. Finally, we present aan-squared error (m.s.e.) between the desired average and
numerical studies, which verify our theoretical results. .
the converged sensor states. The m.s.e. can be made arbitrarily
Index Terms— Distributed Consensus, Quantized Information Small by rescaling the sequence of link weights associated
Exchange, Topology, Laplacian, Randomized Algorithm. with the algorithm. However, improving the accuracy of the
final estimate in this way, slows down the convergence rate
of the algorithm and we find an interesting trade-off between
[. INTRODUCTION convergence rate and m.s.e. Finally, we note that our approach

Distributed average consensus computes the global averkfg¥ery generic and can be extended with similar results to
of sensor data in a distributed fashion in sensor networ@her situations of imperfect communication, like random link
using only local inter-sensor communication (see, e.g., [1fgilure, additive noise, etc. Due to lack of space, we will
It finds applications in many practical problems in distributeainly highlight the key steps in the derivation of these results.
sensor networking, including distributed detection, estimatioR€tailed derivation and analysis can be found in [2].
swarm aggregation, flocking. In most cases, these decentrallhe distributed consensus problem with quantized trans-
ized networking applications operate under severe resoufgission has been studied recently in [3], [4]. The algorithm
constraints, both in terms of computation and communicatiofl. [3] is restricted to integer-valued initial sensor states, where
In particular, sensors in a wireless networked environmedt €ach iteration the sensors exchange integer-valued data.
communicate by exchanging quantized rather than analog datds shown there that the sensor states are asymptotically
where the bandwidth or data rate allocated to a particul@Pse (in the appropriate sense defined there) to the desired
inter-sensor communication channel is directly related to te¥erage, but may not reach absolute consensus. In [4], a
number of bits used by the quantizer. In this paper, we provié@ndomized algorithm is considered, and it is shown that the
an algorithm, QC, for average consensus with quantized intéxpected sensor states converge to the desired average, but no
sensor information exchange and analyze its performance @flytical bounds on the mean-squared error are presented. In
convergence properties. contrast, the QC algorithm considered in this paper, leads to

We highlight several key features of our algorithm. Firs@-S. consensus of the sensor states to a finite random variable,
we note that, with no randomization, the quantization el addition to the fact that the expected sensor states converge
rors will, in general, accumulate and lead to divergence afRithe desired average. We explicitly characterize the resulting
unboundedness of the sensor states. Thus, deliberately, Wg-€. and show that, by tuning certain parameters of our
randomize our algorithm by adding a controlled amount @#gorithm, the m.s.e. can be made arbitrarily small, though

at a cost of convergence rate.
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the m.s.e and the convergence rate in Section IV. SectionOénsider the sequencév,,; (i)};>0,1<n <y Of ii.d. ran-
presents a numerical study. Finally, Section VI concludes tdem variables uniformly distributed ofi-A/2,A/2). Let
paper and comments on the generalizations of our approadl (i) },>o be a real number sequence satisfying

Il. PROBLEM FORMULATION AND PRELIMINARIES a(i)>0 Za(i) — > ZO‘2 (i) < o0 o)
We model the sensor network by a gragh= (V, E), where i>0 i>0
V' represents the set o nodes in the network andl' is the  pengting byz,, (i) the state of thex-th sensor at iteration,

set of M edges or communication links among the Sensofge OC algorithm consists of the following recursion:
For clarity, we assume that the network topology remains

unchanged throughout the process. However, our approagh(i + 1) = (1 — a (i) dy,) zp, (i)+a (3) Z q (z; (1) + vy (7))

can handle randomly varying topologies, as commented in 1€Q,
Section VI. We define théV x N adjacency matrixA, as . o 9)
_ with the initial sensor state vecter(0).
A _{ Loif (”vl)_e B (1) In Section Ill, we show that, under the QC algorithm,
" 0 otherwise the state vector sequencex (i)};>0, converges a.s. to the
The graph Laplacian, is then defined as consensus subspack In other words, there exists a finite
random variableg, such that
L=D-A (2)
whereD = diag(d; - - - dn) is the diagonal matrix of node de- P Llinolox (i) = 91} =1 (10)

grees.! The LaplacianL is a symmetric positive-semidefiniteThe m.s.e(, is then given by
matrix and hence its eigenvalues can be arranged as

0=X (L) <A (L) <--- < An (L () 3)

For a connected network, (L) > 0 (see [5].) Throughout the
paper, we assume that the sensor network is connected. i
Let x (0) € RY*! pe the vector of initial sensor states.

¢=E[0—r] (11)

and this is explicitly characterized in Section IV.

. PROOF OFCONVERGENCE OFQC

Define the average; = (1/N)1"x(0), where1 is the  The recursive update in egn. (9) is rewritten as

N x 1 vector of ones. In distributed average consensus,

starting from some initial statex (0), the sensors compute n (i+1) = (1 —a(i)dn)zn (i) +a (i) Y (2 (i)
the average- iteratively, where at each iteration each sensor e,

has access only to its neighboring states. For consensus with +p1 (2) + € (7)) (12)

guantization, the sensors can exchange only quantized staﬁe N o .
) . X ) ) . wheree,,; (i) is the quantization error and given by
information with their neighbors. In particular, we assume
that each inter-sensor communication channel uses a uniform ¢, (i) = q (z; (4) + v (i) — 2 (1) — v (i) (13)
guantizer, whose input-output relation may be modeled by the . . , .

s : ) By construction, the i.i.d. s€tv,,; (i) }1<n1<n IS independent
quantizing functiof, ¢ (-) : R — Q, . _ <n,I< ] len

of x(i). Then, it can be shown from results in statistical
1 1 tization theory (see [6]) that the sgt,; (i)}

=bA, (b—=)A<y<(b+=)A 4) quan _theory : SRt (1) b1<ni<n

a(v) ( 2) =Y ( + 2) @ consists of i.i.d. random variables uniformly distributed on

wherey € R is the channel input and\ > 0 is the [—2/2,A/2)and independent of (i). Introduce
quantization step-size. We may write T, (i) = — Z vt (i), W (i) = — Z e (i) (14)

q(y) =y+e(y) (5) 1€Qn 1€Qy,

wheree (y) is the quantization error, and we have The update in eqn. (12) can be put in vector form as

A< <A y 6 x(i+1)=x@)—a(@)[Lx@)+YXE+PE)]  (15)
2 - e(w) < 2 Y ©) where the random vectof$ (i) and ¥ (i) are independent of
We now present our randomized algorithm QC for quantizeéle statex (i) and have independent components.
consensus. We now give a result on the convergence of sample paths
QC Algorithm : Define the consensus subspaCeas of Markov processes, which will be used later.
C:{xGRNX1|m:a1,a6R} @)
_ . _ _ Theorem 1Consider a Markov proces$x (i)};>o on RV*1,
'The neighborhood of a nodex in G is defined asQ. = pefine the operatol, which acts on non-negative functions
{Le V: (n,l) € E(i)}. The corresponding node degrég, is the number . . Nx1
of edges incident to it and is given ki, = |Q,,]. V(i,x),i>0, z€R by

2|n this case, the quantizer output takes values in the countabl@set, . . . . .
{kA | k € Z}. However, if the initial statex (0) is bounded, only finitely- LV (i,x)=E[V(@i+1,x(i+1))[x()=x]-V(ix) as.
many quantization steps will suffice (see [2].) (16)



Now suppose there exists a non-negative functias given by the following recursion:
Vi,x), i > 0, x € RV and a setB c RNx!

with the following properties: Tavg (i + 1) = wavg (i) — (1) [T (1) + ¥ ()] zavg (0) ?22)
1) | | where T (i) = (1/N) 17X (i) and T (i) = (1/N)17% (i).
o 0f (B)V(%X) >0, Ve >0 (17) cClearly, T (i) and ¥ (i) are independent ofk (i). Also,

_ . _ it follows from the fact that the components of the sets
V(va) =0, xe B, lim sup V' (Z,X) =0 (18) {an (i)}lgn,lgN and {snl (i)}lgn,lgN are i.i.d. uniformly

B0 distributed on[—A /2, A /2), that
whereV, (B) = {z € RV*! | inf z,y) > €} . — .
2) (B) ={ ‘ yEB p(z,y) } E W(”] -F [\If (Z)] =0, Vi (26)

LV (i,x) < g@) 1+ V (i,x)) — a (i) (i,x) (19) Also, we have

=2 =2 MA%
wherey (i,x),i > 0, x € RV*! is a non-negative function E [Tz (Z)} =E {\1’2 (l)} = GNZ Vi (27)
such that . .
. . where M is the number of edges in the network. It can be
inf ¢(i,x) >0, Ve >0 (20) - . . X
i,xeV.(B) shown that the sequenderay(i)}i>o is a martingale with
3) respect to the filtratiord
Oz(i%g(i) >0, ZQO) = o0, Zg(l) < 00 (21) Fi :U{X(O)v{T (j)}0§j<i7{‘1’ (j)}0§j<i} (29)
i>0 i>0 We then have
Then, the Markov procesgx;};>o with arbitrary initial dis- [ [2245(i+1)] = E[zag(i) —a @) [T () +@(71)]]2 (30)

tribution converges a.s. to B ds— oc.

Proof: The proof is given in [2] and relies on [7]. We —2 . N
omit it here due to lack of space. n +E {‘I’ (1)} +2E [T (i) ® (Z)H

We are now in a position to give the main theorem on the a.s.
convergence of the QC algorithm.
5 1/2 5 1/2

©2(E[T6) " (BT 0]) }
Theorem 2Let x (0) be the initial sensor state vector and 9. )
the corresponding average, to be computed. Consider the state - K [xgvg(')] M
vector sequencex (i)};>0, generated by the QC algorithm. 3N?
Then there exists a finite random variablesuch that where we have used the independence assumptions and

eqns. (26,27). Continuing the recursion and using the fact that
Dis0 @ (i) < 0o, we have
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Proof: We outline the key steps of the proof. Details g [.2 ()] <#2 (0 + 2MA o2 (7). Vi 31
can be found in [2]. It is clear that the state vector sequence (a5 (1)] = Ta (0) 3N? ]Z;O (), D)
{x () }i>0 generated by the QC algorithm is a Markov pro- ) ) B .

cess. Assuming the network is connected, it can be shown M note that{zayg(i)}i>0 is an L,-bounded martingale and

this Markov process satisfies the conditions of Theorem 1 wifi¢Nce converges a.s. and/4n to a finite random variablé.
In other words, there exists a finite random variaf)esuch
V(i,x) = x'Lx, B=C (23) that,

where L is the graph Laplacian and is the consensus p [hm Tavg (i) = 9} =1, lim E[zag(i) — 6> =0 (32)
subspace, defined in eqn. (7). We then have, by Theorem 1, i—00

that x (i) converges a.s. to the sét This is equivalent to The theorem then follows from eqns. (24,32). [ ]
the fact that, asymptotically, the componentsxofi) reach

consensus and hence tend to their average value. In othé¥. MEAN-SQUARED ERROR ANDCONVERGENCERATE
words, we have

1—00

Section Il shows that asymptotically the states of the
P[_lim % (i) — Zavg (1) 1] = 0| =1 (24) Sensors reach consensus and, in fact, converge a.s. to a

11— 00

N T (5) i SA filtration, F, is a non-decreasing sequence of sigma algebras. A
Where'ma"g (Z) .(1/N) 1"x (i) is the average of the SENSOL s chastic procesdz (i)};>0, is F adapted, ifz (i) is F; measurable for
states at time, with Lavg (0) =T. eachi. An integrable procesdz (7)};>0, which is adapted to a filtratiofF,
The proof will be completed if we can show that the randotm a martingale if ' '
sequence{ray (i) }i>0, CONverges a.s. to some finite random Elz(i+1)|Fi]l=2(0) as. (28)

variablef. To this end, we note that the sequekieg,g (i) }i>o0



finite random variable). Viewing 6 as an estimate of, we the actual average. Clearly, the plot verifies our theoretical
characterize its statistical properties. We show thas an results.
unbiased estimate of, which is a desirable property. To this

end, we note that from egn. (25) it follows o

E [zavg (i) =7, Yi >0 (33)

@
>
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by

Since, the sequenc@ray(i)}i>o converges tof in Lo, it
converges also i, and we have
E[9] = lim E [zayg(i)] (34)
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Thus, 6 is an unbiased estimate of the desired average

To compute the m.s.€ (see egn. (11)), we note that the % Tomae
sequence of non-negative functiofigayg(z) — r)2 converges T < ‘éo - 2\
a.s. to(d — r)°. Hence, by Fatou's lemma, Treration Number i
2 . . . 2
E[g—r]" < hirgirng [Tavg (i) — 7] (35) Fig. 1. QC algorithm on a network d¥ = 100 sensors.

Using exactly similar manipulations, as used in the derivation
of egn. (31), it can be shown that
) VI. CONCLUSION AND GENERALIZATIONS
E [zag(i) — 7] < Qé\f\g > a’(j), Vi (36) In this paper, we consider a distributed QC algorithm for
§>0 average consensus when sensors exchange quantized state
Combining eqns. (35,36) it follows that information. We show that, if the network is connected, the
sensors asymptotically reach consensus and converge to a
¢< 2MA? Z o? (4) (37) finite random variablé. We note that is an unbiased estimate
~ 3N? of the desired average and also the mean-squared errqr,
) . o betweerf andr can be made arbitrarily small, by rescaling the
Whlch gives an explicit upper bound on the m.s.e. Wg commapk weight sequencéa (i)}i=o. We also point out the trade-
on this upper bound. We note thatincreases with increas- off petween accuracy (smalle) and the convergence rate
ing A. This is intuitive, because a coarser quantization Wil pe QC algorithm. Finally, we note that the QC algorithm
typically lead to larger m.s.e. We now point out another veyan pe extended to a wide range of situations involving
interesting feature of the QC algorithm. Sind€, ., o* (j) < imperfect inter-sensor communication. Examples include ran-
oo, we note that the m.s.¢.can be made as small as possiblgjomly failing communication links, additive channel noise,
by properly rescaling the weight sequenge(j)};>0 by @ gata dependent noise, etc. For example, in [2], we show that,
constant. This means that the QC algorithm can be tuned;fQjmyitaneously we have additive channel noise and random
make( as small as desired. But, this leads to an interestiRgsrnoulli link failures, a distributed algorithm can be designed,
trade-off betweeq and the convergence rate of the algorithmgych that the sensors reach arbitrarily close to the desired

Thus, an attempt to increase the accuracy of the algorithm V\guerage value, if\; (E[L]) > 0 (note that the Laplacians are
lead to a slower convergence rate. This trade-off is studigg\y random.)

formally in [2] and we omit it here due to lack of space.
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