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ABSTRACT mality of the best constant weight matrix stems from the fact
. . .__that all the edge weights are constrained to be the same.
The average consensus p”’b'e”? n th_e d|s_tr|buted §|gnal In this paper, we propose accelerating the convergence
\?v:?f:: Z?Irr:]g fci?gec:)gr:?/;dirrlec:s:?g ?hyel'ch)?;gﬁ;itslve_rﬂgncﬂénv rate of distributed average consensus by using a convex com-
ymp 9 . o ination of the values obtained by a linear predictor and the
gence .Of the average consensus fqr an grbnrary We'ghbmatrgtandard consensus operation. Unlike previous methods, we
satls_fyl_ng the convergence conditions IS unfqrtuna_tt_ad:yvsl do not burden the nodes with extra computational load since
restricting the use of the developed algorithms in appbcet C .
the prediction is linear and its parameters can be calailate

In this paper, we propose the use of linear extrapolatioiimet offline. We present a general framework for accelerating the
ods in order to accelerate distributed linear iterations.pio- conse;'lsus but focus on a special case to gain further insigh
yide analytical a_md simulation results that demonstrage/m For this caée, we derive the optimal convex combinatio'n pa-
lidity an_d effe_ctweness of the _proposed scheme._ Fmgllg/, W rameter that maximizes asymptotic convergencerate. The op
report S|mulz_:\t|on results shoyvmg that the generalizedioar timal parameter requires knowledge of the second largekst an
gIn?Jl:r: 3:33;It2frnr;1i\lv><irr]§npzrg::1detse erazgczsfg(; tg%;gggmnoﬁ_the_smallest gigenvalue_s of the weight matrix. W_e theref(_)re
performs the optimum consensus algorith’m based on weiglgte”ve suboptlmal solutions thz?\t need _much less .|nforn_1at|o
matrix optimization nd are easily implementable in practical scenarios. Iyma_l

) we assess the performance of the general proposed algorithm

Index Terms— distributed signal processing, average convia simulations.

sensus, linear prediction. The remainder of this paper is organized as follows. Sec-
tion 2 introduces the distributed average consensus proble
Section 3 details the proposed algorithm, along with itgpro
erties and the optimal mixing parameter for the special.case

A major drawback of the developed average consensus Jf also specifies the achieved improvement in rate of conver-

gorithms [1-3] is the number of iterations required to con-I€Nce: and describes practical suboptimal solutions. We re

verge to consensus often refraining the use of them in pra(p-ort t_he res_ults of numerlcal §|mulat|ons testing the peapo
tical scenarios. Much of the research addressing with cori"llgor'thrnS in Section 4. Section 5 concludes the paper.
sensus algorithm acceleration has been conducted by Boyd

et. al.[1,2]. They showed that it is possible to formulate 2. PROBLEM STATEMENT

the problem of asymptotic convergence time minimization as

a convex semidefinite weight matrix optimization problem.We define a graply = (V, £) as 2-tuple, consisting of a set
The disadvantages of this approach are twofold. First, phe a V with |V| = N vertices, wherg - | denotes the cardinality,
proach is based on a convex optimization paradigm and thand a set of edges. We denote an edge between vertices
time or computational resources necessary to set up the nénd; as an unordered paif, j) € £. We assume connected
work may be substantial. Second, this approach requires tieetwork topologies and the connectivity pattern of the brap
connectivity pattern to be known in advance and thus assumégs given by theV x N adjacency matrix® = [®;;], where
that there is a fusion center or some distributed mechanisf;; = 1if (i,5) € £ and®;; = 0 otherwise. Moreover, we
that is aware of the global network topology. To combat thedenote the neighborhood of the nodby N; £ {j € V :
second problem, iterative optimization using the subgnaidi (i, j) € £}. The degree of the nodds denotedl; £ |\;|.
algorithm is proposed in [2]. However, the resulting algo-  We consider a set of nodes of a network, each with an ini-
rithm is extremely demanding in terms of time, computationtial real valued scalat;(0), wherei = 1,2,...,N. Let1

and communication. Another approach to weight matrix op-denote the vector of ones. The goal is to develop a distribute
timization, called “best constant” [1], is to set the neighb iterative algorithm that computes, at every node in the net-
ing edge weights to a constant and optimize this constant twork, the valuex = (N)~'17x(0). In standard distributed
achieve maximum possible convergence rate. The suboptionsensus, at each step, each node updates its state with a

1. INTRODUCTION



linear combination of its own state and the states at itshieig Substituting (4) into (2b) we get the following expression f

bors,x(t+1) = Wx(t) wherex(t) denotes the network state x(t) in matrix form as:

vector andW is a weight matrix that is constructed to satisfy W ] 5

topology constraint, that i#/;; = 0 whenever®;; = 0. The x(t) = Wlalx(t —1) ®)

weight matrix, W, needs to satisfy the following conditions whereW/a] is the weight matrix modified by the proposed

to ensure asymptotic average consensus [1]: predictor based distributed average consensus (PBDAC) al-
W1=1,1"W=1T p(W-J) <1 1)  gorithm:

’ X ) @ Wia] 2 (1+a)W —al. (6)
. . N
wherep(-) denotes the spectral radius of a maipiW) = The following proposition describes some propertie®\gf|.

. N - AN
maxi{[Ai| 11 =1,2,...,N}. Here{A;};Z, denote the o o e omitted due to space constraints but can be found
eigenvalues oW. In this paper, without loss of generality, in [4]

we assume that, in the modulus, the second largest eigenvalu
of the weight matrix is\ 2y, i.e., A2y > [Aw)|, where; Proposition 1 Supposé&V satisfies the necessary conditions
denotes theé-th ranked eigenvalue. for the convergence of the standard consensus algorithnme-Mo
over, letA;y > Ay > ... > Ay denote the eigenvalues
3. PREDICTOR-BASED DISTRIBUTED AVERAGE ~ associated with eigenvectors, uy, ..., uy and letA;[a]

CONSENSUS (PBDAC) der_10te the ranked eigenvaluest[o_é]. _
(i) If Ay > 0, thenW(a] satisfies the required conver-

We modify the above consensus algorithm to increase its con-  gence conditions for alt. If A(y) < 0, thenWa] is a

vergence speed in the following way: doubly stochastic matrix. Moreover (W — J) < 1 if
aV (1) = wix(t — 1), @} (t:k) = ©T2,(t),  (28) a < (1=Aw) 1+ M) ()
zi(t) = axp (t) + (1 — a)z)V (t). (2b) (i) W[a] has the same eigenvectors and its eigenvalues
wherew,; denotes thé—th row of W. Here the state value are related to the eigenvalues 8 via the relation-
z;(t) is a convex combination of the value¥ (¢) andz? (; k), ship: Aolal = (14 A —a ®)

i.e, a € (0,1). Note thatx"(t) results from the standard
consensus procedure. Moreovef,(t) = xF (k) is ak— for anya and:.
step prediction of future node states obtained frahprevi-

local node states stacked into th (1 In the following, we consider optimization of to maxi-
ous local hode states S%C eT into the vesior) = ["T.l( . mize the asymptotic (worst—case) rate of convergence for al
M+4+1),...,z;(t — 1),z (¢)]". Itis shown that using lin-

1 . . . gorithmic structure (2) and th&/ = 2, k = 1 case.
ear least squares techniques that optimum predictor vmgh? )

can be expressed & = AT7tP-* whereAT is the Moore- Theorem 1 PBDAC with)/ = 2 andk = 1 has the fastest
Penrose pseudoinverseAf andA andt®* have the follow-  asymptotic worst—case convergence rate if
ing form [4],

ANy F A@
a=a 2 argminp(Wla] = J) = M T2@ (g
Anll o 1 1 r tP,kﬁ{]\/fﬁ-k] 3) ggop(Wiel = J) 2= ) — A ©
L M=-1 M 1 To see to what extent the proposed algorithm (2) yields

Notice from (2a) that:? (¢) is a linear combination af/ performance improvement over the conventional consensus,

previous local consensus values. Thus the consensusmccele consider the ratio of the spectral radius of correspandin
ation mechanism outlined in equations (2a—2b) is fully lifca Matrices that gives the lower bound on performance improve-
it is possible to find the optimum value afin (2b) that with- ~menty[a] £ p(W — J)/p(W[a] — J).
out_global knowledge: The parameter®@rcan be calculated Proposition 2 In the optimal casei.e, whena = a*, the
offline for any M, k pair.

In the general case, the analysis of the proposed algorith
is complicated (we assess the performance of the algorithm v A2 = A2 = Aw)) 10
at its most general case and at its full potential with simula el = A@2) — Aw) ' (10)
tions in Section 4). In order to gain further insight into the Althouah (9 id ion f i -
algorithm’s performance we analyze an important case when ough (9) provides an expression for optimum mix

the algorithm (2) is based on one step extrapolator of nod&d factor resulting in fastest asymptotic convergenaa e

: . calculation of this optimum value requires knowledge of the
state operating on two previous node states, ;: = 1 and second and the last eigenvalues of maWx Therefore it is
M = 2. In this case® = [—1,2]T hencer? (¢) is expressed 9

. of interest to derive suboptimum choices fothat result in
as follows: . ) . .
less performance gain but require considerably less irderm
2P (t) = 22V (1) — it — 1). (4) tion at the node level.

r[%erformance improvement factor is given by




Proposition 3 The PBDAC has asymptotic worst-case con-Proposition 5 Consider the Max—degree weight design scheme
vergence rate faster than that of conventional consenshs if where£(d;,d;) £ N-Yfor (i,5) € £ andW;; = 1 — N;/N,
value of mixing parameter satisfied:< o < a*. then, we have

To ensure that[a] > 1, and remove the need of weight oo £ RIS Ng 20-E{¢})=2(1-p) (14
matrix information, we proceed to derive boundsconsatis- oo
fying the range defined by Proposition 3. The mentioned conwhere E{¢} = p is the probability that two nodes in the net-
straints indicate that* needs to be lower—bounded, which work are connected.
implies that we need to derive a lower bound o$) + A ).

N o N The valuep can be analytically derived for a given con-
Proposition 4 If W satisfies the convergence conditions andnectivity radius and distribution of the nodes [4]. Sulusiitg
its eigenspectrum is a convex function of the eigenvalueind this into (12) gives
then\ Aay > €, where —
@ T A 2§ w<izP (15)
2(tr(W) = 1)

D

(11)  This provides an intuition indicating that, for highly (spaly)
connected graphsg., large (smallp, a small (largej is fa-

andtr(-) denotes the trace of its argument. vored. In turn, a small (large) implies more (less) weight is
associated with the predictor output.

Proposition 4 provides an upper bound for the mixing pa-

rametero in terms of the trace of weight matrtv: 4. NUMERICAL EXAMPLES

£ . We consider a set oN = 50 nodes uniformly distributed
< j = A(S). (12)  on the unit square. The nodes establish bidirectional lioks
' each other if the Euclidean distance between them is smaller
Centralized calculation af:(W) is a far less complicated op- than the connectivity radius,/log N/N. Initial node mea-
eration than computing eigenvalues to find the optimum mixsurements are generated-as= ¢ + n wheref = 1 and
ing parameter. Moreover, it can be calculated in a distebut n is Gaussian distributed with = 1. Then, we regular-
fashion. However, the convexity assumption appears to bige the data such tha = 1. First of all, we compare the
strong and unnecessary in many cases and the upper bougghvergence time results of the algorithm we propose for the
still requires knowledge of the diagonal element3Asf theoretically analyzed! = 2 andk = 1 case, against the
We now consider the special, but important, case of ranalgorithms presented in [1, 2]. Let us introduce the follogvi
dom geometric graphs, which can act as good topologicdlotation: MD and MH are the standard consensus algorithms
models of wireless sensor networks, one of the promising afpased on maximum degree and Metropolis—Hastings weight
plication domains for consensus algorithms. For this casénatrices [1, 2], respectively; OPT is the optimum and BC the
we show that there exists an asymptotic upperbatind¢)  best constant algorithm from [1, 2]; MD-@, MD-SM, and
for o that can be calculated off-line. The random geometridD—-SAM denote the PBDAC using the maximum degree
graph is defined as followsy nodes (vertices) are distributed Weight matrix and optimum, suboptimumx chosen accord-
in an areaD according to a point process with known spatialing to the trace bound (12), and suboptimanthosen ac-
distributionp,. ,,(,y). Two nodes and; are connected, i.e. cording to the asymptotic bound (15), respectively; MB4O
®,; = 1, if the Euclidean distance; ; between them is less and MH-SV/ denote the PBDAC using Metropolis-Hastings
then some predefined connectivity radius The indicator ~weight matrix, optimunax and suboptimum chosen accord-

[\]

function[{rﬁj <r}y=1 Whenever]’zj < r2 holds. ing to trace bound (12), respectively. In this notatighis an
We consider weight matricé® constructing according integer number showing how many past samples are used in
to a rule of the following form: the predictor.
Figure 1 compares the convergencetimes of the algorithms.
W { I{r?; <r2}L(ds,dy), i#j (13) Here the algorithm (2) is simulated for the case that was an-
T L= en Wi i =1 alyzed analytically in Section 3.e, M = 2 andk = 1. It

is clear from Fig. 1 that although our algorithm is extremely
whereL(d;, d;) is some function of the local connectivity de- simple and does not require any global optimization, it per-
greesd; andd; of nodesi andj. For such a graph and weight forms almost as well as the optimum algorithm from [1, 2].
matrix, the following proposition provides an asymptotie u It outperforms the best constant algorithm when used in con-
per bound on the value of mixing parametein terms of the  junction with the Metropolis—Hastings weight matrix. When
expectation off {r?; < r2}L(d;,d;) for the popular Max— Max—degree is utilized in the proposed algorithm, its asymp
degree weights [1]. totic convergence time is very similar to that of the optietiz
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Fig. 1. Asymptotic convergence time for, M\, MD-02:  Fig. 2. MSE versus time step for, MHA, MH-02: +, MH—
+, MD-S2: x, MD-SA2: o, BC: {, OPT:OJ, MH: x, MH-  S2: x, MH-03: >, BC: ), and OPTL{1.
02: <, MH-S2:0- 5. CONCLUDING REMARKS

best constant approach from [2]. Moreover, the solution ob- )
tained using Proposition 5 performs similarly to the subopt We have presented a general, predictor-based framework to

mal solution derived using knowledge of the tracét improve the rate of convergence of distributed average con-
Figure 2 shows the evolution with iteration of the mean-S€NSUS algorithms. In contrast to previous acceleratien ap
squared error (MSE) proaches, the proposed algorithm is simple, fully linead a

parameters can be calculated offline. To gain further insigh

1N into the proposed algorithm, we focused on a special case,
MSE(t) = + > (zi(t) - %) (16)  presenting theoretical and simulation results. In its nsost
i=1 ple case, the proposed algorithm outperforms the optinsl be

o ) constant algorithm from [1] and performs almost as well as
for PBDAC and (optimized) standard consensus algorithmspe worst—case—optimal design algorithm of [2]. Simulatio

The PBDAC approaches employ Metropolis—Hastings weightdies shows that the proposed algorithm has the potémtial
matrlces. The |_ntent is to depict the poter_mal of PBDAC, SOputperform significantly the worst—case—optimal algarith
in order to obtain the results for our algorithm wheh= 3t in order for this potential to be realized, we must devise

andk = 1 we used d.1 grid for the unknown parameter 5 scheme for specifying an optimal (or close-to-optimal)
and evaluated the MSE of our algorithm at every value:of 3¢ for the casa/ > 2, and this is the subject of our cur-
during each of the trials. For each trial, we selecteddhe (ont research efforts.

that achieved the minimum MSE at iteratiof. The results 6. REFERENCES
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