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ABSTRACT

Spectrum sensing is an essential functionality that enables
cognitive radios to detect spectral holes and opportunistically
use under-utilized frequency bands without causing harmful
interference to primary networks. Since individual cognitive
radios might not be able to reliably detect weak primary sig-
nals due to channel fading/shadowing, this paper proposes a
cooperative wideband spectrum sensing scheme, referred to
asspatial-spectral joint detection, which is based on a linear
combination of the local statistics from spatially distributed
multiple cognitive radios. The cooperative sensing problem
is formulated into an optimization problem, for which subop-
timal but efficient solutions can be obtained through mathe-
matical transformation under practical conditions.

Index Terms— Spectrum sensing, distributed detection,
nonlinear optimization, and cognitive radio.

1. INTRODUCTION
As an essential functionality of cognitive radio (CR) networks
[1], spectrum sensing needs to reliably detect weak primary
radio signals of possibly-unknown formats. Generally, spec-
trum sensing techniques can be classified into three categories:
energy detection, matched filter coherent detection [2], and
cyclostationary feature detection. Since non-coherent energy
detection is simple and able to generate the spectrum-occupancy
information quickly, we adopt it as the building block for con-
structing the proposed wideband spectrum sensing schemes.

The literature on wideband spectrum sensing for CR net-
works is limited. An earlier approach is to use a tunable nar-
rowband bandpass filter at the RF front-end to sense one nar-
row frequency band at a time, over which the existing narrow-
band spectrum sensing techniques can be applied. In order to
search over multiple frequency bands at a time, the RF front-
end needs a wideband architecture, and spectrum sensing usu-
ally operates over an estimate of the power spectral density
(PSD) of the wideband signal. In [3], wavelet transformation
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was used to estimate the PSD over a wide frequency range
given its multi-resolution features. However, no prior work
attempts to make decisions over multiple frequency bands
jointly, which is essential for implementing efficient CR net-
works.

In this paper, we consider the situation in which spectrum
sensing is compromised by destructive channel conditions be-
tween the target-under-detection and the detecting cognitive
radios, which makes it hard to distinguish between a white
spectrum and a weak signal. We propose a cooperative wide-
band spectrum sensing scheme that exploits the spatial diver-
sity among cognitive radios to improve the sensing reliabil-
ity. The cooperation is based on a linear combination of local
statistics from spatially distributed cognitive radios [4] [5],
where the signals are assigned different weights accordingto
their positive contributions to joint sensing. In such a sce-
nario, we treat the design of distributed wideband spectrum
sensing as aspatial-spectral joint detection problem, which
is further formulated into an optimization problem with the
objective of maximizing the overall opportunistic through-
put under constraints on the interference to primary users.
Through mathematical reformulation, we derive a suboptimal
but efficient solution for the optimization problem, which can
considerably improve sensing performance.

2. SYSTEM MODEL

Consider a primary communication system (e.g., multicarrier
based) over a wideband channel that is divided intoK non-
overlapping subchannels. At a particular time, some of the
K subchannels might not be used by the primary users and
are available for opportunistic spectrum access. Multiuser or-
thogonal frequency division multiplexing (OFDM) schemes
are suitable candidates for such a scenario since they make it
convenient to nullify or activate some portion of multiple nar-
row bands. We model the detection problem over the subband
k as one to choose between hypothesisH0,k (“0”), which rep-
resents the absence of primary signals, and hypothesisH1,k

(“1”), which represents the presence of primary signals. An
illustration where only some of theK bands are occupied by
primary users is illustrated in Fig. 1. The crucial task of spec-
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Fig. 1. Illustration of the occupancy of a multiband channel.

trum sensing is to sense theK frequency bands and identify
spectral holes for opportunistic use. For simplicity, we as-
sume that the high-layer protocols guarantee that all CRs keep
quiet during the detection such that the main spectral power
under detection is emitted by the primary users.

Consider a multi-path fading environment, whereh(l),
l = 0, 1, . . . , L−1, denotes the discrete-time channel impulse
response between the primary transmitter and a CR receiver
with L equal to the number of resolvable paths. The received
baseband signal at the CR front-end can be expressed as

r(n) =

L−1
∑

l=0

h (l) s (n− l)+v(n), n = 0, 1, . . . , N0−1 (1)

where s(n) represents the primary transmitted signal with
cyclic prefix at timen and v(n) is additive complex white
Gaussian noise with zero mean and varianceσ2

v , i.e.,v(n) ∼
CN

(

0, σ2
v

)

. In a multi-path fading environment, the wide-
band channel exhibits frequency-selective features and its dis-
crete frequency responses are given by

Hk =
1√
N0

L−1
∑

n=0

h(n)e−j2πnk/N0 , k = 0, 1, . . . ,K−1 (2)

whereL ≤ N0. We assume that the channel is slowly varying
and the channel frequency responses{Hk}K−1

k=0 do not vary
much during a detection interval. In the frequency domain,
the received signal at each subchannel can be estimated by
computing its discrete Fourier transform (DFT):

Rk =
1√
N0

N0−1
∑

n=0

r(n)e−j2πnk/N0 = HkSk + Vk (3)

whereSk is the primary signal at subchannelk and

Vk =
1√
N0

L−1
∑

n=0

v(n)e−j2πnk/N0 (4)

is the received noise in the frequency domain. Note thatVk ∼
CN

(

0, σ2
v

)

sincev(n) ∼ CN
(

0, σ2
v

)

and the DFT is a uni-
tary linear operation. Without loss of generality, we assume
that the transmitted signalSk, channel gainHk, and additive
noiseVk are independent of each other.

To decide whether thek-th subchannel is occupied or not,
we test the following binary hypotheses:

H0,k : Rk = Vk, k = 0, 1, . . . ,K − 1

H1,k : Rk = HkSk + Vk, k = 0, 1, . . . ,K − 1 (5)

For each subchannelk, we compute the test statistic as the
sum of received energy over an interval ofM samples, i.e.,

Yk =

M−1
∑

m=0

|Rk(m)|2 k = 0, 1, . . . ,K − 1 (6)

and the decision rule is given by

Yk

H1,k

R
H0,k

γk (7)

whereγk is the corresponding decision threshold. For sim-
plicity, we assume that the transmitted signal at each subchan-
nel has unit power, i.e.,E

(

|Sk|2
)

= 1; this assumption holds
when the primary radios adopt uniform power transmission
strategies given no channel knowledge at the transmitter side.

According to the central limit theorem for largeM , Yk is
asymptotically normally distributed with mean

E (Yk) =

{

Mσ2
v H0,k

M
(

σ2
v + |Hk|2

)

H1,k
(8)

and variance

Var (Yk) =

{

2Mσ4
v H0,k

2M
(

σ2
v + 2|Hk|2

)

σ2
v H1,k

(9)

for k = 0, 1, . . . ,K − 1. Thus, assuming largeM , we have
Yk ∼ N (E (Yk) ,Var (Yk)).

Using the decision rule in (7), the probabilities of false
alarm and detection at subchannelk can be respectively cal-
culated approximately as

P
(k)
f (γk) = Pr (Yk > γk|H0) = Q

(

γk −Mσ2
v

σ2
v

√
2M

)

(10)

and

P
(k)
d (γk) = Q

(

γk −M
(

σ2
v + |Hk|2

)

σv

√

2M (σ2
v + 2|Hk|2)

)

(11)

whereQ denotes the tail probability of the standard normal
distribution. The choice of thresholdγk leads to a tradeoff
between the probabilities of false alarm and missPm = 1 −
Pd. Specifically, a higher threshold will result in a smaller
probability of false alarm but a larger probability of miss,and
vice versa.

3. SPATIAL-SPECTRAL JOINT DETECTION
Suppose thatN spatially distributed cognitive radios collabo-
ratively sense a wide frequency band. By combining the local
statistics from individual cognitive radios at the fusion cen-
ter, which can be one of the CRs, the network can make a
better decision on the presence or absence of primary signals
on each of theK subchannels. The cooperation assumes a
separate control channel, through which the statistics of in-
dividual CRs are transmitted to the fusion center. LetYk(n)
denote the received energy in thek-th subchannel at cognitive
radion. For each subchannel, these statistics can be written
in a vector asY k = [Yk(0), Yk(1), . . . , Yk(N − 1)]

T .
To exploit the spatial diversity, we linearly combine the

summary statistics from spatially distributed cognitive radios
at each subchannelk to obtain a final test statistic:



zk =

N−1
∑

n=0

wk(n)Yk(n) = wT
kY k (12)

wherewk = [wk(0), wk(1), . . . , wk(N − 1)]
T are the com-

bining coefficients for subchannelk, which can be compactly
written in a matrix asW = [w0 w1 . . . wK−1]. Note that
wk(n) ≥ 0, for everyk andn.

Since the entries inY k are normally distributed, the test
statistics{zk}K−1

k=0 are also normally distributed with means

E (zk) =

{

Mσ2
vw

T
k 1 H0,k

MwT
k

(

σ2
v1+Gk

)

H1,k

(13)

where1 is an all-one vector, and variances

Var (zk) =

{

2Mσ4
vw

T
kwk H0,k

2Mσ2
vw

T
k

[

σ2
vI + 2diag(Gk)

]

wk H1,k

(14)
whereGk =

[

|Hk(0)|2, |Hk(1)|2, . . . , |Hk(N − 1)|2
]T

are
the squared magnitudes of the channel gains between the pri-
mary transmitter and theN CR receivers for subchannelk.

In order to decide the presence or absence of the primary
signal in subchannelk, we use the following binary test

zk

H1,k

R
H0,k

γk, k = 0, 1, . . . ,K − 1. (15)

Accordingly, the detection performance in terms of the prob-
abilities of false alarm and detection are given by

P
(k)
f (wk, γk) = Q





γk −Mσ2
vw

T
k 1

σ2
v

√

2MwT
k wk



 (16)

and

P
(k)
d (wk, γk) = Q





γk −MwT
k

(

σ2
v1+Gk

)

σv

√

2MwT
k [σ2

vI + 2diag(Gk)]wk





(17)
For compactness of notation, we collect the probabilities of
false alarm and detection over theK subchannels into vectors
P f (W ,γ) andP d(W ,γ). Thus, the probabilities of miss
can be represented asPm(W ,γ) = 1− P d(W ,γ).

Our goal is to maximize the opportunistic rate while meet-
ing some constraints on the interference to the primary com-
munication system. Letrk denote the throughput achiev-
able over thek-th subchannel if used by cognitive radios, and
r = [r0, r1, . . . , rK−1]

T . Since1−P
(k)
f measures the oppor-

tunistic spectrum utilization of subchannelk, we define the
aggregate opportunistic throughput capacity as

R (W ,γ) = rT [1− P f (W ,γ)] . (18)

For a widband primary system, the impact of interfer-
ence induced by cognitive devices can be characterized by
a relative priority vector over theK subchannels, i.e.,c =
[c0, c1, . . . , cK−1]

T , whereck indicates the cost incurred if
the primary user at subchannelk is interfered with. As such,
we define the aggregate interference to the primary user as

cTPm(W ,γ). Consequently, the spatial-spectral joint de-
tection problem is formulated as

max
W ,γ

R (W ,γ) (P1)

s.t. cTPm(W ,γ) ≤ ε (19)

Pm(W ,γ) � α (20)

P f (W ,γ) � β (21)

whereα = [α0, . . . , αK−1]
T andβ = [β0, . . . , βK−1]

T .
Finding the exact solution for the above problem is diffi-

cult since for anyk, P (k)
f (wk, γk) andP (k)

d (wk, γk) are nei-
ther convex nor concave functions according to (16) and (17).
To jointly optimizeW andγ, we can show that (P1) can be
reformulated into an equivalent form with convex constraints
and an objective function lower bounded by a concave func-
tion under the following conditions:

0 < αk ≤ 1

2
and 0 < βk ≤ 1

2
, k = 0, . . . ,K − 1. (22)

Through maximizing the lower bound of the objective func-
tion, we are able to obtain a good approximation to the opti-
mal solution of the original problem.

First, we show how to transform the nonconvex constraints
in (20) and (21) into convex constraints by exploiting the
monotonicity of theQ-function. Substituting (16) into the
constraint (21), we have

Q−1(βk)
√

2MwT
k wk ≤ γk

σ2
v

−MwT
k 1 (23)

whereQ−1(βk) ≥ 0 givenβk ≤ 1/2. From (17), the con-
straint (20) can be expressed as
√

2MwT
k [σ2

vI + 2diag(Gk)]wk ≤ γk −MwT
k

(

σ2
v1+Gk

)

σvQ−1(1− αk)
(24)

givenαk ≤ 1/2 andQ−1(1 − αk) ≤ 0. Since the left-hand
side on the constraint (23) is convex and the right hand side
is linear in (γk, wk), (23) defines a convex set for(γk,wk).
Similarly, (24) is also a convex constraint.

Then, we reformulate (P1) by introducing a new variable

µk = σv

√

2MwT
k [σ2

vI + 2diag(Gk)]wk. (25)

By definingγ′
k = γk/µk andw′

k = wk/µk, the constraints
(23) and (24) can be further written as

Q−1(βk)

√

2Mw′
k
T
w′

k ≤ γ′
k

σ2
v

−M1
Tw′

k (26)

and
γ′
k −M

(

σ2
v1+Gk

)T
w′

k ≤ σvQ
−1(1 − αk). (27)

Note that (27) is actually a linear constraint in (γ′
k, w′

k). The
constraint (19) now becomes

1
T c−

K−1
∑

k=0

ckQ
(

γ′
k −M

(

σ2
v1+Gk

)T
w′

k

)

≤ ε, (28)

which can be shown to be convex by the following result.



Lemma 1 If γ′
k ≤ M

(

σ2
v1+Gk

)T
w′

k, then the function

Q
(

γ′
k −M

(

σ2
v1+Gk

)T
w′

k

)

is concave in {γ′
k,w

′
k}.

By changing the variablesW ′ andγ′, P (k)
f (wk, γk) can

be expressed as

Q

[

(

γ′
k

σ2
v

−M1
Tw′

k

)

√

σ2
v +

2w′
k
Tdiag(Gk)w′

k

w′
k
T
w′

k

]

(29)

From the the Rayleigh-Ritz theorem [6], we have

min
n

|Hk(n)|2 ≤ w′
k
T
diag(Gk)w

′
k

w′
k
T
w′

k

≤ max
n

|Hk(n)|2 (30)

Define a new function

gk (γ
′
k,w

′
k)

∆
= Q

[(

γ′
k

σ2
v

−M1
Tw′

k

)

√

σ2
v + 2min

n
|Hk(n)|2

]

(31)

which can be shown to be convex by the following result.
Lemma 2 If γ′

k ≥ σ2
vM1

Tw′
k, then the function gk(γ

′
k,w

′
k)

is convex in {γ′
k,w

′
k}.

SinceP (k)
f (wk, γk) ≤ gk(γ

′
k,w

′
k), the objective function

in (P1) can be lower bounded by
∑N−1

k=0 rk [1− gk (γ
′
k,w

′
k)],

which is a concave function. Thus, an efficient suboptimal
method to solve (P1) is to maximize the lower bound of its
objective function, i.e.,

max
W ′,γ′

N−1
∑

k=0

rk [1− gk (γ
′
k,w

′
k)] (P2)

st. −
K−1
∑

k=0

ckQ
[

γ′
k −M

(

σ2
v1+Gk

)T
w′

k

]

≤ ε− 1
T c

Q−1(βk)

√

2Mw′
k
T
w′

k ≤ γ′
k

σ2
v

−M1
Tw′

k

γ′
k −M

(

σ2
v1+Gk

)T
w′

k ≤ σvQ
−1(1− αk).

Implied by the practical conditions in (22), this problem isa
convex optimization problem and can be solved efficiently.

4. SIMULATIONS

Suppose that two CRs cooperatively sense a multiband OFDM
system with8 subbands. For each subband, it is expected
that the opportunistic spectrum utilization is at least50%,
i.e., βk = 0.5, and the probability that the primary user is
interfered is at mostαk = 0.1. It is assumed thatσ2

v = 1
andM = 100. Other parameters are given in Table 1. Fig.
2 shows result of solving (P2), which maximizes the oppor-
tunistic throughput subject to the constraints on the interfer-
ence. We observe that the joint detection results in much
higher opportunistic throughput than the algorithms without
cooperation. Note that the increase in the throughput of the
joint optimization scheme becomes rather slow as we relax
the interference constraint because the interaction betweenγ
andW pushes the system to an operating point at which the
throughput is more limited byβ than byε.

Table 1. Parameters used in simulations

G(0) .17 .21 .27 .14 .37 .38 .49 .33

G(1) .21 .17 .21 .21 .17 .43 .15 .35

r 356 327 972 806 755 68 720 15

c .71 5.95 3.91 4.21 .44 2.03 .58 2.85
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Fig. 2. Aggregate opportunistic throughput capacity vs. the con-
straint on the aggregate induced interference.

5. CONCLUSION
In this paper, we have proposed a spatial-spectral joint de-
tection framework for distributed wideband spectrum sens-
ing in cognitive radio networks, within which the cooperation
among spatially distributed cognitive radios is optimizedover
multiple frequency bands. By exploiting the inherent struc-
ture of the formulation, we have developed suboptimal but
efficient solutions for the non-convex optimization problem.
This paper establishes important principles for the designof
distributed wideband spectrum sensing algorithms in cogni-
tive radio networks.
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