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ABSTRACT was used to estimate the PSD over a wide frequency range
diven its multi-resolution features. However, no prior Wor
attempts to make decisions over multiple frequency bands
which is essential for implementing efficient CRthe

Spectrum sensing is an essential functionality that esabl
cognitive radios to detect spectral holes and opportuaibyi &
use under-utilized frequency bands without causing harmf®intly;
interference to primary networks. Since individual coiyeit WOTKS. , L
radios might not be able to reliably detect weak primary sig- " this paper, we consider the situation in which spectrum
nals due to channel fading/shadowing, this paper proposes>§NSing is compromised by destructive channel conditiens b
cooperative wideband spectrum sensing scheme, referred {f§€€n the target-under-detection and the detecting dgnit
asspatial-spectral joint detection, which is based on a linear radios, which makes |t_hard to distinguish between a Wh_lte
combination of the local statistics from spatially distied ~ SPectrum and a weak signal. We propose a cooperative wide-
multiple cognitive radios. The cooperative sensing proble ©and spectrum sensing scheme that exploits the spatiat dive
is formulated into an optimization problem, for which subop Sity @mong cognitive radios to improve the sensing reliabil
timal but efficient solutions can be obtained through mathelty: The cooperation is based on a linear combination offloca
matical transformation under practical conditions. statistics frqm spatially dl_str|bute_d cognltlvg radiog [5J,_

) o _where the signals are assigned different weights accotding

Index Terms— Spectrum sensing, distributed detection,theijr positive contributions to joint sensing. In such a-sce
nonlinear optimization, and cognitive radio. nario, we treat the design of distributed wideband spectrum

sensing as apatial-spectral joint detection problem, which
) L !NTRODUCTDN ) is further formulated into an optimization problem with the
As an essential functionality of cognitive radio (CR) netk®  qpjective of maximizing the overall opportunistic through
[1], spectrum sensing needs to reliably detect weak primary,t under constraints on the interference to primary users.
radio signals of possibly-unknown formats. Generallycspe Through mathematical reformulation, we derive a subogtima
trum sensing techniques can be classified into three cagsgor t efficient solution for the optimization problem, whichrc

energy detection, matched filter coherent detecfion [24, anconsiderably improve sensing performance.
cyclostationary feature detection. Since non-cohereatggn

detection is simple and able to generate the spectrum-accyp 2. SYSTEM MODEL
information quickly, we adopt it as the building block foreo  Consider a primary communication system (e.g., multiearri
structing the proposed wideband spectrum sensing schemebased) over a wideband channel that is divided itmon-

The literature on wideband spectrum sensing for CR neteverlapping subchannels. At a particular time, some of the
works is limited. An earlier approach is to use a tunable nar& subchannels might not be used by the primary users and
rowband bandpass filter at the RF front-end to sense one nare available for opportunistic spectrum access. Multiose
row frequency band at a time, over which the existing narrowthogonal frequency division multiplexing (OFDM) schemes
band spectrum sensing techniques can be applied. In orderaoe suitable candidates for such a scenario since they make i
search over multiple frequency bands at a time, the RF froneonvenient to nullify or activate some portion of multipkern
end needs a wideband architecture, and spectrum sensing usow bands. We model the detection problem over the subband
ally operates over an estimate of the power spectral densitiyas one to choose between hypoth@sis, (“0”), which rep-
(PSD) of the wideband signal. Inl[3], wavelet transformatio resents the absence of primary signals, and hypotiésis

This research was supported in part by NSF under Grants ANI-0 (1%, which represents the presence of primary signals. An

38807, CNS-06-25637, ECS-06-01266, ECS-07-25441, CNg5667, and  lllustration where only some of th&” bands are occupied by
by DoD under Grant HOTRN-07-1-0037. primary users is illustrated in Figl 1. The crucial task adcp
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Spectrum holes Subbands occupied by M-1

primary users Y. = |R (m)|2 k=0,1,..., K —1 (6)
_“Jm\‘ \\ k Z k

m=0

and the decision rule is given by

1 0 1 0 1 0 0 0 1 1 H>1’k
. _ . Yo = (7)
Fig. 1. lllustration of the occupancy of a multiband channel. Ho x

trum sensing is to sense tié frequency bands and identify where~; is the corresponding decision threshold. For sim-
spectral holes for opportunistic use. For simplicity, we as Plicity, we assume that the transmitted signal at each sarbch
sume that the high-layer protocols guarantee that all CRg ke N€l has unit power, i.eE (|Sx|?) = 1; this assumption holds
quiet during the detection such that the main spectral powe¥hen the primary radios adopt uniform power transmission

under detection is emitted by the primary users. strategies given no channel knowledge at the transmitler si
Consider a multi-path fading environment, whérg@), Accorpling to the centr_al I!mit theo_rem for large, Y;, is
1=0,1,...,L—1, denotes the discrete-time channel impulse2Symptotically normally distributed with mean
response between the primary transmitter and a CR receiver Mo2 Ho
with L equal to the number of resolvable paths. The received E (V) = { M Yy 02 2 ' (8)
baseband signal at the CR front-end can be expressed as , (Gv + [Hy| ) Lk
I and variance
= h(l - D+ , n=0,1,...,No—1 (1 2Mo? H
r(0) = 3 h@)s (0= D+o(n), n -1 (1) Var(m:{ ot L Mg
=0 . . . . 2M (UU+2|Hk| )O'U Hl,k
where s(n) represents the primary transmitted signal with
cyclic prefix at timen andv(n) is additive complex white for k = 0,1,..., K — 1. Thus, assuming largk/, we have
Gaussian noise with zero mean and variamgd.e.,v(n) ~ Y, ~ N (E(Yy), Var (Y%)).
CN (0,03). In a multi-path fading environment, the wide- Using the decision rule i {7), the probabilities of false
band channel exhibits frequency-selective features ardigt  alarm and detection at subchanketan be respectively cal-
crete frequency responses are given by culated approximately as
1 = —j2mnk/No (k) Y, — Mo?
Hy, = I Zoh(n)e L k=0,1,...,K—1 (2) P () = Pr (Y > wlHo) = Q ) @O
whereL < Ny. We assume that the channel is slowly varying
K-1
and the channel frquengy respongék; }, ;- do not vary _ " e — M (03 " |Hk|2)
much during a detection interval. In the frequency domain, P (v)=Q (11)
the received signal at each subchannel can be estimated b)(1 ?v\/2M @?‘5 + 2|Hy|?)
computing its discrete Fourier transform (DFT): where@ denotes the tail probability of the standard normal
distribution. The choice of thresholg, leads to a tradeoff

1 Nt N between the probabilities of false alarm and nfiss = 1 —
Ry, = VNo > r(n)e 2 No = 1S+ Vi (3) P, Specifically, a higher threshold will result in a smaller
n=0

_ - _ probability of false alarm but a larger probability of miasd
whereS;, is the primary signal at subchanrieand vice versa.

1 k! _ 3. SPATIAL-SPECTRAL JOINT DETECTION
— Z ,U(n)efj%rnk/Ng (4) ] ) ) - ]

VNo . Suppose thal spatially distributed cognitive radios collabo-
is the received noise in tﬁéfrequency domain. Notethat ratively sense a wide frequency band. By combining the local
CN (0,02) sincev(n) ~ CA (0,02) and the DFT is a uni- statistics from individual cognitive radios at the fusicene
tary linear operation. Without loss of generality, we assum t€f» Which can be one of the CRs, the network can make a

that the transmitted signal,, channel gairtf;, and additive better decision on the presence or absence of primary signal
noiseV; are independent of each other on each of thek” subchannels. The cooperation assumes a

To decide whether the-th subchannel is occupied or not, s_eparate control Channe_l, through Whigh the statistics1-of i

we test the following binary hypotheses: dividual CRs are transmltteq to the fusion center. }‘/9@).
denote the received energy in thth subchannel at cognitive
Hor: Ri = Vi, k=0,1,..., K -1 radion. For each subchannel, these statistics can be written
Hig: Ry = HpSk + Vi, k=0,1,....K—1 (5) inavectora_§fk:[Yk(_O),Yk(l)z...7Yk(_N—1)]T. _
’ To exploit the spatial diversity, we linearly combine the

For each subchannél we compute the test statistic as thesummary statistics from spatially distributed cognitiadios
sum of received energy over an intervalldf samples, i.e., at each subchannglto obtain a final test statistic:

Vi



N—-1 T . ..

B 7 c' P,,(W,~). Consequently, the spatial-spectral joint de-
%k = Z wi(n)Y(n) = wi Y (12)  tection problem is formulated as
n=0

wherew,, = [wy(0), wk(1),...,wi(N —1)]" are the com- W R(W,7) (P1)
bining c_oefficient_s for subchannk] which can be compactly st. TP, (W, ) <e (19)
written in @ matrix asWW = [wo w; ... wx_1]. Note that p - 20
wy(n) > 0, for everyk andn. m(W,7) 2 a (20)
Since the entries iiY';, are normally distributed, the test P;(W,v)<p (21)
. . K71 . . .
statistics{z,.},_, are also normally distributed with means .. lao, .., ax1]T andB = [Bo, .. ., Brc_1]7.
Mo2wil Ho.k 13 Finding the exact solution for the above problem is diffi-
E (k) = Mw} (021+Gy)  Hiyp (13) cult since for any, P]Ek) (W, k) andPék) (wg, vi) are nei-
: . ' ther convex nor concave functions accordind td (16) AnH (17)
wherel is an all-one vector, and variances L .
. To jointly optimize W and~, we can show that{1) can be
Var (21) = 2Mo,wj, wi Ho,k reformulated into an equivalent form with convex constisin
M 2Mo2w] [021 + 2diag(Gr)| wr  Hik and an objective function lower bounded by a concave func-

(14) tion under the following conditions:

T
whereGy, = [|Hg(0)%, |Hg(1)[?,..., |[He(N —1)[?]" are 1 1
the squared magnitudes of the channel gains between the pri-O <o < D) and 0 < fr < > k=0,..., K —1. (22)

mary transmitter and thy CR receivers for subchannel  Through maximizing the lower bound of the objective func-
~ In order to decide the presence or absence of the primagon we are able to obtain a good approximation to the opti-
signal in subchannéi, we use the following binary test mal solution of the original problem.
Hik First, we show how to transform the nonconvex constraints
2k ; w, k=0,1,...,K—1. (15) in (20) and [(21l) into convex constraints by exploiting the
Ho.x monotonicity of theQ-function. Substituting[(16) into the
Accordingly, the detection performance in terms of the probconstraintl(Zl), we have
abilities of false alarm and detection are given by Q' (B) /2Mwak < 'y_;; ~ Mw!1 (23)
.

v

_ 2., T
= Moywy 1 (16) whereQ~'(8) > 0 given 3, < 1/2. From [IT), the con-

o2¢/2Mw] wy, straint [20) can be expressed as

and T (2
T ; Ve — Mwj, (UU1+G1€)

b w - e — MwT (021 + Gy) \/QJV[wk [021 + 2diag(Gy)] wy, < 72011 —aF)

d ks 'Yk) — Q T2 . (24)

GU\/Qka [o3 T + 2diag(Ge)] wi givenay, < 1/2 andQ (1 — ax) < 0. Since the left-hand

(17)  side on the constraint (R3) is convex and the right hand side

For compactness of notation, we collect the probabilities ojs jinear in ¢, wy,), (Z3) defines a convex set {61, wy,).
false alarm and detection over thesubchannels into vectors  gimilarly, (24) is also a convex constraint.

P;(W,v) and Pq(W,~). Thus, the probabilities of miss  Then, we reformulateR(1) by introducing a new variable
can be represented &,,(W,v) =1 — Py3(W,~).
Our goal is to maximize the opportunistic rate while meet- U = Oy \/2ng [021 + 2diag(Gr)| wi.  (25)

ing some constraints on the interference to the primary com- o, . )
munication system. Let, denote the throughput achiev- BY defining;, = yi/pk andw;, = wy/pur, the constraints
able over the:-th subchannel if used by cognitive radios, and(@3) and[(2#) can be further written as

T . (k) /
r=[ro,T1,. ., TK-1] .Slncel—Pf measures the oppor- 1 / T« T T
tunistic spectrum utilization of subchanrigl we define the Q7 (B 2M ) wi < o2 M1 (26)
aggregate opportunistic throughput capacity as and

R(W,y)=r"[1-PyW,v)]. (18) Vo= M (P1+G) wj <0,Q 7 (1 —ap).  (27)

H H H H !/
For a widband primary system, the impact of interfer—NOte that[2V) is actually a linear constraint if},(w;,). The

ence induced by cognitive devices can be characterized bcspnstralnt[IIB) now becomes

P;k)(wka’yk) = Q

a relative priority vector over thé&l subchannels, i.e¢ = . K-1 ) ) T,
[co,c1,...,cx—1]", Wherecy, indicates the cost incurred if 1°¢— Z Q@ (’Yk - M (071 + Gy) wk) <e, (28)
the primary user at subchanrieis interfered with. As such, k=0

we define the aggregate interference to the primary user aghich can be shown to be convex by the following result.



Lemmallf~, < M (031 + Gk)ijc, then the function
Q (7,; — M (c21+Gy)" w;) isconcavein {v},, w}}.

By changing the variable®’ and~’, Pf(k) (wg, vx) can
be expressed as

/ 9 /Td~ G /
Ql(lﬁ—MlTw;) \/03+ = iaTg(,’“)w’“] (29)
Ty Wy, wy

From the the Rayleigh-Ritz theorefd [6], we have

w}CTdiag(Gk)

/T
wy

!
min |y ()| < 2k < max [Hy(n)]* (30)

wy,

Define a new function

A T .

2Q [(o_i;) — MlTw;) \/03 + 2min |Hk(n)|2}
(31)

which can be shown to be convex by the following result.

Lemma 2 If ;> op M 17w, then the function g (~;,, wy,)
isconvexin {~v;, w}.

SinceP}k) (Wi, k) < gx(75, w},), the objective function
in (P1) can be lower bounded By » ' 7+ [1 — gi, (74, w},)],

gk (V> wy)

which is a concave function. Thus, an efficient suboptima

method to solvelf1) is to maximize the lower bound of its
objective function, i.e.,

N-—1
A !
— P
A > k1= g (v, wh)] (P2)
k=0
K—-1 T
st. — k@ [7,; - M (031 + Gk) w;c} <e—-1%¢

=

=0

/
Q7 (B)y/2Mw) w), < 1

Yo — M (031 + Gk)T wj, < O'UQ_I(l — ag).

Implied by the practical conditions ifL.(22), this problemais
convex optimization problem and can be solved efficiently.

4. SIMULATIONS

T
- M1" w),

Suppose that two CRs cooperatively sense a multiband OFDdj
system with8 subbands. For each subband, it is expected

that the opportunistic spectrum utilization is at least,
i.e., Br = 0.5, and the probability that the primary user is
interfered is at mosty, = 0.1. It is assumed that? = 1
andM = 100. Other parameters are given in Table 1. Fig
[2 shows result of solvingH?2), which maximizes the oppor-
tunistic throughput subject to the constraints on the fater

Table 1. Parameters used in simulations

G(0) 17 .21 .27 14 .37 .38 .49 .33
Gy || 21| 17| 21| 21| 17| 43| 15| 35
r 356 | 327 | 972 | 806 | 755 | 68 720 | 15
c 71 | 595|391 | 421 | .44 | 2.03| .58 | 2.85
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Aggregate Interference

Eig. 2. Aggregate opportunistic throughput capacity vs. the con-
traint on the aggregate induced interference.

5. CONCLUSION

In this paper, we have proposed a spatial-spectral joint de-
tection framework for distributed wideband spectrum sens-
ing in cognitive radio networks, within which the coopeaoati
among spatially distributed cognitive radios is optimineér
multiple frequency bands. By exploiting the inherent struc
ture of the formulation, we have developed suboptimal but
efficient solutions for the non-convex optimization prahle
This paper establishes important principles for the design
distributed wideband spectrum sensing algorithms in cogni
tive radio networks.
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