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ABSTRACT

This paper considers a coding scheme for data transmission

over erasure channels which is also known as multiple de-

scription coding. The LMMSE prefilter method of Romano

[1] is reviewed and generalized to allow three different oper-

ational modes of the prefilter. They include the possibility to

decrease or increase the number of descriptions to be trans-

mitted. We derive explicitly the Hessian matrix for an effi-

cient calculation of the prefilter. We also study the properties

of the distortion measure theoretically.

Index Terms— multiple description coding, transform

coding, correlating transform

1. INTRODUCTION

Multiple description coding (MDC) is often linked with a

packet oriented transmission scheme like the internet. In the

internet, some packets (i.e. descriptions) might get lost. This

may e.g. be the case for an internet-router that is congested

and its buffers overflow. The problem at the receiver is now to

obtain an estimate of the original information from the subset

of available packets.

But multiple description coding also appears to be a valid

tool for an incremental specification of signals. In the Collab-

orative Research Center SFB 732 [2], methods for incremen-

tal specification of speech are investigated. One feature that

one would expect from such an incremental scheme is that

subsets of different descriptions of the speech signal can be

arbitrarily chosen and help to restore a better representation

of the original speech sample.

A good overview of current techniques for multiple de-

scription coding can be found in [3, 4].

In this paper we investigate a correlating transform which

was introduced in the inspiring paper [1]. After a short in-

troduction into the MDC problem, we will further general-

ize [1] in section 3. This generalization allows us to handle

the case that more descriptions are used after the correlating

transform. Thus, our scheme provides the possibility of a

redundancy coding. This new operational mode of a MDC
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correlating transform is very interesting in the case that the

channel offers enough bandwidth. It allows us to further min-

imize the distortion by transmitting redundant descriptions.

At the end of section 3, we summarize all possible opera-

tional modes. Section 4 finally is a collection of characteris-

tics that the distortion measure inhibits. Its Hessian matrix is

derived which is useful for solving the optimization problem.

A Matlab Toolbox with an implementation of our proposed

algorithm can be found in [5].

Following notation is used throughout this paper: x de-

notes a vector, X a matrix and I the identity matrix.

2. THE ERASURE CHANNEL AND THE OPTIMAL

CORRELATING TRANSFORM

Fig. 1 shows the considered system. The real-valued, zero-

mean random vector x is to be transmitted over an erasure

channel that might randomly erase elements of x and there-

fore the received vector z might be of smaller dimension than

x. Note, that we do not consider quantization noise as was

done in [1]. We will assume in this paper that unerased de-

scriptions are received without distortion. The erasure process

of the channel is described by a matrix Pe which is composed

of the unit row vectors of the surviving descriptions, i.e. it has

zero columns for the descriptions that do not survive. A fur-

ther assumption is that Pe is known to the receiver, i.e. it

knows which descriptions got lost during transmission.

In the case that there is no precoding (i.e. T = I), the

linear MMSE estimation of x from the received vector z is

clearly (see e.g. [6])

x̂ = RP
T
e (PeRP

T
e )−1z (1)

where we used R = E[xxT ]. The corresponding correlation

matrix of the error ǫ = x − x̂ is

Rǫ = R − RP
T
e (PeRP

T
e )−1

PeR (2)

and we can define a distortion De as

De = E
[

‖ǫ‖2
]

= tr
{

Rǫ

}

(3)

Eq. (1) allows us to estimate the lost descriptions of x. How-

ever, this is only a reaction of the receiver to a particular eras-

ing matrix Pe. It is obvious that we can decrease (3) if we
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Fig. 1. Erasure Channel

use a precoding. In [1], Romano dealt with this problem. He

introduced a transform T before the data vector x is transmit-

ted over the erasure channel. The idea of this transform is to

distribute the important information of x over all elements of

y. Since different erasure constellations Pe are possible, T

has to be designed to consider all of them.

The encoding and decoding equations with a prefilter T ∈
R

K×L and L ≤ K are given by

y = T
T x (4)

x̂ = Vez = RTP
T
e

(

PeT
T
RTP

T
e

)−1
z (5)

The optimal transform T is found by minimizing the over-

all distortion D which takes into account all possible erasure

constellations Pe by calculating a weighted sum of the indi-

vidual distortions De.

D =

E
∑

e=1

weDe =

E
∑

e=1

we

[

tr (R)−

tr
(

RTP
T
e

(

PeT
T
RTP

T
e

)−1
PeT

T
R

)

]

. (6)

E is the total number of error constellations and we the weight-

ing of a particular error constellation. we can e.g. be chosen

to be the probability that the error constellation Pe occurs. As

a simple model, we could e.g. assume that each description is

safely transmitted with the probability p. Therefore, the prob-

ability that one specific error constellation Pe with L − M

erased descriptions occurs is merely we = pM (1 − p)L−M

and the total number of error constellations is E = 2L.

If E = 1, i.e. only one Pe is possible, then we can eas-

ily minimize D by using only the descriptions that are not

erased. These descriptions have to contain the coordinates of

x along the eigenvectors of R with the largest eigenvalues.

This corresponds to the Karhunen-Loeve transform which is

the optimal linear transform T in this case.

For E > 1, no closed-form solution is known and Ro-

mano proposed a gradient search to seek for the optimal trans-

form T in [1].

3. A GENERALIZED CORRELATING TRANSFORM

In this section, we will generalize the precoding in (4). This

generalization will allow us to also have more descriptions

after the precoding, i.e. L > K . The basic idea is to transmit

redundant descriptions which are more unlikely to be erased

altogether and therefore more descriptions remain available

to compute a better estimate x̂ at the expense of an increasing

bandwidth. The only difficulty is a possible rank deficient

correlation matrix of z if the redundancy introduced by the

transform T is not completely erased by the channel.

As an example, let K = 2 and L = 4, i.e. the pre-

filter adds two redundant descriptions. Assume further that

the channel transmits all descriptions, i.e. Pe = I. The prob-

lem now is that PeT
T
RTP

T
e = T

T
RT ∈ R

4×4 has at most

a rank of two and can therefore not be inverted.

We propose the following selection process to solve this

problem: As we seek for the optimal T by an iterative method

like gradient search in [1] or Newton method, we determine

at each iteration the rank of TP
T
e which corresponds to the

number of non-redundant descriptions. If rank{TP
T
e } <

M , i.e. E[z zT ] will be rank deficient, we delete additional

rows of Pe resulting in P̃e ∈ R
M̃×L (M̃ ≤ M) such that

rank{TP̃
T
e } = M̃ . This corresponds to deleting redundant

descriptions in z such that the vector of non-redundant trans-

mitted descriptions has a full rank correlation matrix. The

question is which rows of Pe should be deleted. We system-

atically try all possible combinations of row vectors of Pe

and use that combination with the smallest condition number

of TP̃e. This also ensures that the calculation is numerically

robust. The generalized distortion function therefore is

D =
E

∑

e=1

we

[

tr (R)−

tr

(

RTP̃
T
e

(

P̃eT
T
RTP̃

T
e

)

−1

P̃eT
T
R

)]

. (7)

P̃e includes both, the erasure process of the channel and the

selection process above to handle redundant descriptions.

Note, that if we had not neglected the influence of the

noise (e.g. because of quantization noise), then instead of

PeT
T
RTP

T
e we would have to consider the full rank matrix

PeT
T
RTP

T
e + Rnoise. In this case, the above procedure is

not necessary and all descriptions will help to improve the

estimation of the original x.

In total, we can now distinguish between three different

operational modes of the correlating transform T ∈ R
K×L.

K > L: The vector y that is transmitted has a smaller num-

ber of elements, i.e. the prefilter T performs a compres-

sion. Additionally, it will try to minimize the distortion

D and therefore T will mainly consist of a combination

of the eigenvectors with large eigenvalues.



K = L: In this case, y and x have the same dimension and

we improve the robustness of the transmission against

the erasure channel by the precoding T.

K < L: The number of descriptions increases after the pre-

coding. This corresponds to a redundancy coding, where

we allow the transmitter to use more descriptions to

safely transmit the information to the receiver.

4. PROPERTIES OF THE OPTIMIZATION

PROBLEM

Below, we study the generalized correlating transform theo-

retically. In particular, we give four properties of the distor-

tion D in (7). Especially the knowledge of the Hessian matrix

will help us to find the optimal transform T efficiently.

4.1. Gradient and Hessian of D

Property 1: Eq. (8) and (9) give the elements of the gradient

vector and the Hessian matrix of D where W = VeP̃e. ∂α

denotes the derivative with respect to α and ∂αβ is the second

derivative with respect to α and β.

Proof: Note, that the gradient vector was already stated in

[1]. Because of space limitations, we omit a detailed deriva-

tion of (9) in this paper. �

The knowledge of the Hessian matrix allows us to use

more complex optimization methods, e.g. the Newton method,

to determine the optimal T that minimizes (7).

We can simplify (8) and (9) further if α and β denote two

elements of T at the positions (i, j) and (k, l) by using

∂αT = ∂ijT = J
ij (10a)

∂αβT = ∂ij,klT = 0. (10b)

J
ij ∈ R

K×L is a single entry matrix which is zero every-

where except for a ”1” at the position (i, j).

4.2. Stationary points of D

Property 2: Each transform T = U with L ≤ K , where the

columns of U contain any distinctive eigenvectors of R =
E[xxT ], is a stationary point of the distortion (7).

Proof: We consider only one error constellation P̃e in (8),

i.e. one summand. For the special case that T = U, we obtain

after some calculations

W = RUP̃
T
e

(

P̃eU
T
RUP̃

T
e

)

−1

P̃e

= UΛP̃
T
e

(

P̃eΛP̃
T
e

)

−1

P̃e

= UP̃
T
e Λ̃Λ̃

−1
P̃e = UP̃

T
e P̃e (11)

where Λ is a diagonal matrix with the eigenvalues of R to the

eigenvectors U and Λ̃ = P̃eΛP̃
T
e . In the appendix, we show

that ΛP̃
T
e = P̃

T
e Λ̃ holds. This was used in the last line of

(11). Therefore, (8) can be rewritten as

∂D

∂α

=2

E
∑

e=1

we tr
{

P̃
T
e P̃eU

T
(

UP̃
T
e P̃eU

T−I

)

R∂αT|T=U

}

= 2

E
∑

e=1

we tr {0} = 0

as U
T
U = I and P̃eP̃

T
e = I. �

Property 2 is even valid for the case that T contains eigen-

vectors of R several times. The selection process introduced

in section 3 will erase the duplicated eigenvectors and UP̃
T
e

will only contain distinctive eigenvectors.

4.3. Normalization of T

Property 3: Let N = diag(n11, . . . , nLL) ∈ R
L×L be a di-

agonal matrix and nii 6= 0. Then TN has the same distortion

D as T, i.e. (7) is invariant to a scaling of the columns of T.

Proof: Analog to the proof of property 1, we consider

only one term in (7)

RTNP̃
T
e

(

P̃eNT
T
RTNP̃

T
e

)

−1

P̃eNT
T
R

= RTP̃
T
e ÑÑ

−1
(

P̃eT
T
RTP̃

T
e

)

−1

Ñ
−1

ÑP̃eT
T
R

= RTP̃
T
e

(

P̃eT
T
RTP̃

T
e

)

−1

P̃eT
T
R (12)

where Ñ = P̃eNP̃
T
e ∈ R

M×M . Here, we again use the

identity NP̃
T
e = P̃

T
e Ñ from the appendix. �

From the property above we see that each column vec-

tor of T can be normalized to one. We can therefore reduce

the computational complexity by constraining T to a special

structure, e.g. setting the norm of each column vector to one.

This is done in this work by using spherical coordinates [7].

The jth column of T using spherical coordinates is
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K−2
∏
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sin φij

K−1
∏

i=1

sin φij























(13)

where 0 ≤ φij ≤ π for i = 1, . . . , K − 2 and 0 ≤ φ(K−1)j <

2π. By using spherical coordinates, the total number of un-

knowns is reduced from KL to (K − 1)L. A drawback of

spherical coordinates is that ∂αT has more than one non-zero

entry and ∂αβT is not always zero in comparison to (10) be-

cause α and β now denote the angles φij . This might be the



∂D

∂α

= 2

E
∑

e=1

we tr
{

W
T

(

WT
T − I

)

R∂αT
}

(8)

∂2D

∂α∂β

= 2

E
∑

e=1

we tr

{

(

W
T (∂αTW

T + W(∂αT)T ) − P̃
T
e (P̃eT

T
RTP̃

T
e )−1

P̃e(∂αT)T
R(I− TW

T )
)

×
(

I − WT
T
)

R∂βT − W
T (I − WT

T )R
(

∂αβT − ∂αTW
T ∂βT

)

}

(9)

reason why computer simulations show, that using spherical

coordinates does not reduce the computation time consider-

ably.

4.4. Symmetry of D

Property 4: Let D1,D2 = diag(±1, . . . ,±1) be two diago-

nal matrices with only ”1” or ”−1” on the main diagonal. If U

is the square matrix of all eigenvectors of R with U
T
U = I,

then replacing T with UD1U
T
TD2 has no influence on (7).

Proof: First, we would like to point out that a right-multi-

plication of T by D2 is only a special case of property 2.

Therefore, we will restrict to the left-multiplication of T by

UD1U
T . One term in (7) is then

tr
{

RUD1U
T
TP̃

T
e

(

P̃eT
T
UD1U

T
RUD1U

T
TP̃

T
e

)

−1

× P̃eT
T
UD1U

T
R

}

= tr
{

UΛD1U
T
TP̃

T
e

(

P̃eT
T
UD1ΛD1U

T
TP̃

T
e

)

−1

× P̃eT
T
UD1ΛU

T
}

= tr
{

UD1ΛΛD1U
T
TP̃

T
e

(

P̃eT
T
RTP̃

T
e

)

−1

P̃eT
T
}

= tr
{

UΛΛU
T
TP̃

T
e

(

P̃eT
T
RTP̃

T
e

)

−1

P̃eT
T
}

= tr
{

RTP̃
T
e

(

P̃eT
T
RTP̃

T
e

)

−1

P̃eT
T
R

}

(14)

In the third line, we used the cyclic shift property tr{AB} =
tr{BA} with B = UD1ΛU

T . Additionally, D1ΛD1 = Λ

holds as D1D1 = I and D1 and Λ are diagonal matrices.

For the last line in (14), we used the identity UΛΛU
T =

UΛU
T
UΛU

T = RR and tr{AB} = tr{BA} with A =
R once again. �

Property 4 can be easily interpreted. The right-multipli-

cation with D2 inverts some columns of T so that they will

point to the opposite direction. As we are transmitting the

coordinates along the columns of T, only their direction is

important but not their orientation. The interpretation of left-

multiplying by UD1U
T is as follows: First, we do a coordi-

nate transform of T along the eigenvectors of R by multiply-

ing with U
T . Afterwards, we change the sign of some rows

by D1. Finally, we reverse the previous coordinate transform

by U. This invariance shows that there is a mirror symmetry

of (7) along the eigenvectors of R.

5. CONCLUSIONS

A generalized and optimum multiple description coding is

considered in this paper. It allows redundant descriptions

to be transmitted which offer an improved robustness against

erasure channels. Several properties of the distortion measure

(7) are proved which help to understand the function of the

prefilter. Especially the knowledge of the Hessian matrix (9)

allows to efficiently find a solution of the optimization prob-

lem.

6. APPENDIX

Let D ∈ R
L×L be an arbitrary diagonal matrix. We will show

in this appendix that the identity DP̃
T
e = P̃

T
e D̃ holds, where

D̃ = P̃eDP̃
T
e ∈ R

M̃×M̃ . Left-multiplying D̃ = P̃eDP̃
T
e by

P̃
T
e yields

P̃
T
e D̃ = P̃

T
e P̃eDP̃

T
e = DP̃

T
e P̃eP̃

T
e = DP̃

T
e (15)

as P̃
T
e P̃e and D are diagonal matrices and P̃eP̃

T
e = I.
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