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ABSTRACT

On open and controversial issue in empirical data analysis is to de-

cide whether scaling and multifractal properties observed in empiri-

cal data actually exist, or whether they are induced by intricate non

stationarities. To contribute to answering this question, we propose

a procedure aiming at testing the constancy along time of multifrac-

tal attributes estimated over adjacent non overlapping time windows.

The procedure is based on non parametric bootstrap resampling and

on wavelet Leader estimations for the multifractal parameters. It is

shown, by means of numerical simulations on synthetic multifractal

processes, that the proposed procedure is reliable and powerful for

discriminating true scaling behavior against non stationarities. We

end up with a practical procedure that can be applied to a single fi-

nite length observation of data with unknown statistical properties.

Index Terms— Multifractal analysis, Non parametric bootstrap,

Stationarity test, Time constancy test, Wavelet Leaders

1. INTRODUCTION

Scale invariance. Scale invariance, or scaling, is a property that has

been extensively observed in empirical data of very different nature,

such as turbulence, network traffic or biomedical signals. In essence,

scale invariance can be defined as the fact that moments of order q of

some multiresolution quantities TX(a, t) (e.g., wavelet coefficients)

are characterized by power law behaviors with respect to the anal-

ysis scale a. The exponents of such power law behaviors, labeled

ζ(q), are referred to as the scaling exponents and are often involved

in detection, identification or classification tasks. Empirical mul-

tifractal analysis, whose goal is to analyze scale invariance in real

data and to provide measurements of the scaling attributes, has been

successfully used in various applications and is currently becoming

a standard tool in empirical time series analysis.

Scale invariance and non stationarity. In the practical multifractal

analysis of empirical data, there has been, and there still is, an impor-

tant controversy: Do scaling actually exist in data, or are they rather

the consequence of non stationarities that conspire to mimic scaling

behavior? To contribute to answering this question, let us first clarify

the issue. There exist two major classes of stochastic processes used

to model scale invariance: Self-similar and multifractal processes.

Both classes consist of non stationary processes, and there is hence

no contradiction between scale invariance and non stationarity in that

respect. The controversy between scale invariance and non stationar-

ity can in fact be cast in the following three categories: First, scaling

actually exist but a smooth trend (in the mean or variance, for ex-

ample), hence a non stationarity, is superimposed to the data and is

likely to impair the analysis; Second, scaling exist in data but their

parameters exhibit some form of variability with respect to time, for

instance due to a change in experimental conditions; Third, scaling

are not present in data but a strong non stationary variability is con-

fused with a scaling property. The first category has been addressed

in a number of research papers (cf. [1] and the references therein)

and will not be further considered here. The second an third cate-

gories are much more involved as a non stationary variability can

correspond to many different realities. Nevertheless, their detection

is of crucial practical importance, since the blind analysis of such

time series is likely to produce misleading interpretations of scaling.

Constancy along time of scaling exponents. The discrimination

of true scaling against various forms of non stationary variability

can be addressed with the following heuristic: When data posses

true scaling properties, scaling exponents estimated over the entire

time series or over non overlapping adjacent windowed time series

are statistically consistent. Conversely, when scaling exponents ob-

tained over non overlapping adjacent subsets of the data are not sta-

tistically consistent, this can only be the signature of some form of

non stationarity, whatever its precise and a priori unknown nature.

Therefore, the issue of testing scale invariance against non stationar-

ity can be meaningfully recast into a test of time constancy of scaling

exponents estimated over adjacent non overlapping subsets of the an-

alyzed time series. This is precisely the intuition developed in [2],

where a time constancy test is developed for the (wavelet coefficient

based) estimation of the Hurst parameter of Gaussian self similar

stationary increment (H-sssi) processes.

Goals of the present contribution: bootstrap and multifractal.

Our goal is to extend such an approach to testing for the time con-

stancy of scaling exponents of multifractal process. This implies two

major changes in methodology: First, the description of multifractal

processes requires a whole collection of attributes, related to pos-

itive and negative statistical orders q, while the Gaussian nature of

the self similar processes analyzed in [2] allows to concentrate on the

second order (q = 2) only. Second, estimations are no longer based

on wavelet coefficients but on wavelet Leaders [3]. While the former

are obtained by a linear transform of the data, the latter stem from a

non linear transform. Moreover, multifractal processes are necessar-

ily non Gaussian, heavy tailed and strongly correlated [4]. For these

reasons, the design of statistical tests is significantly more compli-

cated for multifractal processes. In particular, the properties of the

statistics underlying the test can no longer be obtained analytically,

as opposed to the Gaussian H-sssi case. To address such changes

in goals and methodology and to overcome the corresponding diffi-

culties, a non parametric bootstrap based test procedure is proposed.

Its performance are assessed by application to a large number of

realizations of synthetic processes whose (multifractal and non sta-

tionarity) properties are known and controlled a priori. We end up

with a practical and operational non parametric test procedure, that

exhibits satisfactory statistical performance and that can be applied

to a single observation of empirical data to assess the true existence

of scaling.



2. EMPIRICAL MULTIFRACTAL ANALYSIS

The theory of multifractal analysis is not recalled here and the reader

is referred to e.g., [3–5]. We concentrate here only on multifractal

parameter estimation and on empirical multifractal analysis, referred

to as multifractal formalism.

Multiresolution quantities. Let X(t) denote the time series to be

analyzed. Let dX(j, k) =
R

R
X(t) 2−jψ0(2

−jt − k) dt denote its

discrete wavelet transform (DWT) coefficients. The mother-wavelet

ψ0(t) consists of a reference pattern with a compact time support,

characterized by its number of vanishing moments Nψ ≥ 1: ∀k =
0, 1, . . . , Nψ − 1,

R

R
tkψ0(t)dt ≡ 0 and

R

R
tNψψ0(t)dt 6= 0. Also,

it is such that the collection {2−j/2ψ0(2
−jt − k), j ∈ Z, k ∈ Z}

forms an orthonormal basis ofL2(R). Let us moreover define dyadic

intervals as λ = λj,k =
ˆ

k2j , (k + 1)2j
´

, and let 3λ denote the

union of the interval λ with its 2 adjacent dyadic intervals: 3λj,k =
λj,k−1 ∪ λj,k ∪ λj,k+1. Following [3, 5], wavelet Leaders are de-

fined as: LX(j, k) ≡ Lλ = supλ′⊂3λ |dX,λ′ |. In other words, the

wavelet Leader LX(j, k) consists of the largest wavelet coefficient

|dX(j′, k′)| at all finer scales 2j
′

≤ 2j in a narrow time neighbor-

hood. It has been shown theoretically that the multifractal formalism

is more efficient when wavelet Leaders, rather than wavelet coeffi-

cients, are chosen as multiresolution quantities (cf. [3, 5]).

Multifractal attributes. The existence of scaling in data and the

measurements of the corresponding parameters are commonly based

on structure functions. The structure functions mostly consist of

the sample moment estimates of order q of the LX(j, k), or of the

sample cumulant estimates of order p of the lnLX(j, k), labeled

S(2j , q) and C(2j , p), respectively. Scaling properties are practi-

cally and operationally defined via the following equations:

S(2j , q) = Fq2
jζ(q), (1)

C(2j , p) = c0p + cp ln 2j . (2)

The scaling exponents ζ(q) and the so-called log-cumulants cp rep-

resent the multifractal attributes of X . They are related together as

ζ(q) =
P

p≥1 cpq
p/p! [6].

Estimation procedures. Based on Eqs. (1) and (2), estimations of

the ζ(q) and cp are obtained by weighted linear regressions, from

scales 2j1 to 2j2 , of log2 S(2j , q) and of log2 e · C(2j , p) versus

log2 2j = j. This has been extensively assessed elsewhere [3] and

is not further detailed here.

3. TIME CONSTANCY TEST

In [2], a uniformly most powerful invariant test for the time con-

stancy of the Hurst parameter H of Gaussian H-sssi processes is

devised and analyzed. The test is constructed from wavelet coeffi-

cient based estimates Ĥ(m), obtained from adjacent non overlapping

subsetsX(m) ofX , and relies on Gaussianity, independence and (an-

alytically) known statistics of the estimates. Notably, the variance of

the estimates is known a priori and independent of the true H . The

test statistic reads:

TH =

M
X

m=1

1

σ2
(m)

0

B

@
Ĥ(m) −

PM
n=1

Ĥ(m)

σ2
(m)

PM
n=1

1
σ2
(m)

1

C

A

2

. (3)

Under the null hypothesis (H constant), its distribution is known

exactly, which enables the formulation of the test.

To adapt the test to multifractal processes, we have to extend it to

any multifractal attributes θ ∈ {ζ(q), cp}, whose estimations are

based on wavelet Leaders [3]. This induces two major difficulties:

i) Variances σ2
(m) for the θ̂(m) are no longer known a priori and are

likely to depend on the parameter values; ii) The null distribution of

the test statistics Tθ is no longer known a priori.

4. BOOTSTRAP TEST

To overcome such severe difficulties in the test formulation and fol-

lowing investigations reported in [3], we propose a non parametric

bootstrap based test procedure [7, 8]. Let θ denote the multifrac-

tal attribute under test. From the time series X to be analyzed, M

wavelet Leader based subset estimates θ̂(m) of θ are obtained from

adjacent non overlapping subsets X(m). Assessing the time con-

stancy of θ then amounts to testing the hypothesis that the random

variables {θ̂(m),m = 1, . . . ,M} have identical mean:

H0 : θ(1) = θ(2) = · · · = θ(M). (4)

The test makes use of a bootstrap procedure on the wavelet Leaders,

as sketched in Table 1. It is fully specified in e.g. [3] and not further

detailed here. We only recall that it consists of a moving time-blocks

bootstrap, accounting for dependence amongst wavelet Leaders.

Bootstrap test statistic. The test statistic consists of a modified

version of Eq. (3). It is based on bootstrap variance estimates for

the unknown variances, and on the Graybill Deal estimator instead

of the maximum likelihood estimator of the consensus mean:

Tθ =

M
X

m=1

1

σ̂2∗
(m)

0

B

@
θ̂(m) −

PM
n=1

θ̂(m)

σ̂2∗
(m)

PM
n=1

1
σ̂2∗
(m)

1

C

A

2

. (5)

First, the {LX(j, k)} are cut into M subsets {LX(m)
(j, k)}, corre-

sponding to the subsets X(m). The subset estimates θ̂(m) are com-

puted by applying Eqs. (1) and (2) to the {LX(m)
(j, k)}.

Second, the variance estimates σ̂2∗
(m) for each θ̂(m) are obtained by

applying the bootstrap as in Table 1 to each subset {LX(m)
(j, k)},

yielding B resamples {(LX(m)
(j, k))∗(b)}, b = 1, · · · , B. Then

Eqs. (1) and (2) are used on each of these resamples to obtain the

bootstrap subset estimates θ̂(m)
∗(b), from which the sample variance

is finally estimated: σ̂2∗
(m) = dVar

∗
θ̂(m)

∗(·). Table 2 (left) sketches

this procedure.

Bootstrap null distribution estimation. A bootstrap estimate of

the distribution of the test statistic Tθ under H0 is obtained from the

empirical distribution of:

T ∗
θ =

M
X

m=1

1

σ̂2∗∗
(m)

0

B

B

@

θ̂∗(m) −

PM
n=1

θ̂∗(m)

σ̂2∗∗
(m)

PM
n=1

1
σ̂2∗∗
(m)

1

C

C

A

2

. (6)

First, the bootstrap resampling of Table 1 is applied to the complete

set {LX(j, k)} of Leaders, yielding the B resamples {L
∗(b)
X (j, k)},

b = 1, · · · , B. Each of these resamples is then cut into M sub-

sets {(L
∗(b)
X (j, k))(m)}, and the subset estimations θ̂

∗(b)

(m) are com-

puted from Eqs. (1) and (2). Let us emphasize that resampling

from the complete set of Leaders, rather than from subsets, is a

crucial issue, as it ensures that the θ̂∗(m) all have the same condi-

tional distributions and thus that T ∗
θ reproduces the statistics of Tθ

under H0, shall X satisfy H0 or H1 (cf. Fig. 2). The variance

estimates σ̂
2∗∗(b)

(m) of θ̂
∗(b)

(m) are obtained by first applying bootstrap

to each {L
∗(b)
X (j, k)}, giving the B2 double bootstrap resamples



for b = 1, · · · , B
for j = 1, · · · , j2

From {LX(j, 1), · · · , LX(j, nj)}
random draw, with replacement, circular and

overlapping blocks to form an unsorted collection
n

L
∗(b)
X (j, 1), · · · , L

∗(b)
X (j, nj)

o

end

end

Table 1: Moving blocks bootstrap for obtaining B bootstrap resam-

ples {L
∗(b)
X (j, k)}, b = 1, · · · , B from a set of Leaders {LX(j, k)}.

{LX}
cut

��

∗ // a{L
∗(b)
X }aa

cut

��

∗ // {L
∗∗(b,·)
X }

cut

��

{LX(m)
}∗ //

estimate

��

{(LX(m)
)∗}

estimate

��

{(L
∗(b)
X )(m)}

estimate

��

{(L
∗∗(b,·)
X )(m)}

estimate

��

θ̂(m)

��

θ̂(m)
∗ → σ̂∗

(m)

u}

θ̂
∗(b)

(m)

��

θ̂
∗∗(b,·)

(m) → σ̂
∗∗(b)

(m)

s{

Tθ T
∗(b)
θ

b = 1, · · · , B

�� ��

�� ��

�� ��

�� ��

Table 2: Procedure for obtaining Tθ (left) and T ∗
θ (right) from the

wavelet Leaders {LX(j, k)} ofX . "cut", "estimate" and "∗" stand

for cutting a set intoM subsets, computing estimates θ̂ from Eqs. (1)

and (2), and bootstrap resampling as in Table 1, respectively.

{L
∗∗(b,b2)
X (j, k)}, b2 = 1, · · · , B2. Each of these double boot-

strap resamples is in turn cut intoM subsets {(L
∗∗(b,b2)
X (j, k))(m)},

enabling the computation of the double bootstrap subset estimates

θ̂
∗∗(b,b2)

(m) . Finally, the double bootstrap sample variance estimates

are computed: σ̂
2∗∗(b)

(m) = dVar
∗∗
θ̂
∗∗(b,·)

(m) . This procedure is summa-

rized in Table 2 (right).

Bootstrap test. The test is now readily formulated as:

dθ = 1 if Tθ > T ∗
θ,C and 0 otherwise, (7)

where the test critical value T ∗
θ,C is the (1−α) quantile of the empir-

ical distribution of T ∗
θ , for a certain preset significance level α. The

critical value of α for which the observed test statistic Tθ would be

regarded as just decisive against H0 is called the p-value pθ of Tθ .

5. PERFORMANCE ASSESSMENT AND RESULTS

Monte-Carlo simulations. To evaluate the performance of the pro-

posed test procedures, we apply them to a large number NMC of

realizations of length N of a synthetic multifractal process with a

priori known and controlled multifractal properties. We choose a

well known and easy to simulate multifractal process called multi-

fractal random walk (MRW) for which c1, c2 6= 0; p ≥ 3 : cp ≡ 0.

For a definition of this process, see e.g. [9]. The simulation pa-

rameters are set to NMC = 1000, N = 215, B = B2 = 99 and

α = 0.1. For multifractal attribute estimation, we use Daubechies

wavelets with Nψ = 3. The regression range is set to j1 = 3 and

j2(M) = log2N − log2M − (2Nψ − 1) (cf. [3]). The multifrac-

tal parameters (specified below) are chosen to correspond to realistic

situations observed in actual data (for instance, c2 ≈ −0.025 is a

commonly accepted value in turbulence, cf. [3, 6]).

{c1, c2} {0.75,−0.01} {0.8,−0.02}
θ c1 c2 c1 c2

d̄H0
θ 0.113 0.143 0.075 0.139

p̄H0
θ 0.478 0.469 0.530 0.485

Table 3: Mean rejection rates d̄H0
θ and p values p̄H0

θ (H0, M = 2).

Performance assessment. The performance of the test procedures,

given that a certain hypothesis H(·) is true, are assessed by their

mean rejection rates and p-values,

d̄
H(·)

θ = bENMC{dθ|H(·)} (8)

p̄
H(·)

θ = bENMC{pθ|H(·)}, (9)

where bENMC stands for the mean over Monte Carlo simulations.

For space reasons, we only report results for θ ∈ {c1, c2} and M =
{2, 4} with equal subset lengths. Similar results can be obtained for

cp, p ≥ 3 and ζ(q), other choices of M , and splitting into subsets

of non equal length.

5.1. Performance under H0

The performance under H0 are studied on processes with constant

multifractal attributes {c1, c2}. Table 3 summarizes results for two

different sets of parameters: {c1, c2} = {0.75,−0.01} (left) and

{c1, c2} = {0.8,−0.02} (right). We observe that the mean rejec-

tion rates d̄H0
θ are close to the preset significance level α for both

c1 and c2, and for both parameter settings. Furthermore, the mean

p values p̄H0
θ are close to 0.5, indicating a satisfactory null distribu-

tion estimation. Indeed, under H0, the p-value would be uniformly

distributed between on 0 and 1 if the test was based on the exact null

distribution of the test statistic. The results lead us to the conclusion

that the empirical distribution of T ∗
θ is a satisfactory approximation

of the null distribution of Tθ under H0, and that it is robust with re-

spect to the precise values of the multifractal parameters. For sake

of completeness, we note that results not reported here show that

the slight discrepancies in the observed test sizes are mainly due to

small differences between the variance of θ̂(m) (as measured form

Monte-Carlo simulations) and its bootstrap estimation σ̂∗2
(m).

5.2. Performance under H1

To study the power of the proposed tests, we need to define an alter-

native hypothesis. One could imagine many forms of non stationary

processes, a number of them being likely to mimic scaling behav-

iors when analyzed blindly over the entire time series. Here, we

study one of the simplest such alternatives: processes possess piece-

wise constant multifractal attributes. H1 is thus analyzed with an

alternative consisting of the concatenation of two truly multifrac-

tal processes of equal length with different multifractal attributes

{c
(i)
1 , c

(i)
2 }i=1,2. Two cases are investigated.

Non constant c1, constant c2. In the first case, which we denote

H1(c1), we set c
(1)
1 6= c

(2)
1 and c

(1)
2 ≡ c

(2)
2 = c2, i.e., c2 is con-

stant, while c1 is not. Thus, d̄c1 assesses the power of the test for

time constancy of c1. The parameters are set to c2 = −0.02 and

c
(1)
1 = {0.70, 0.72, · · · , 0.80}, c

(2)
1 = 0.8. Fig. 1 (top) shows test

decisions d̄c1 (solid red line) and d̄c2 (dashed blue line) as a function

of the step size c
(1)
1 −c

(2)
1 . The rightmost points c

(1)
1 −c

(2)
1 = 0 cor-

respond to the mean rejection rates under H0 of Table 3 (right). We

observe that d̄c1 increases fast with |c
(1)
1 −c

(2)
1 | and thus that the test
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Fig. 1: Test decisions d̄c1 (solid red) and d̄c2 (dashed blue) under

H1(c1) (top) and H1(c2) (bottom) for M = 2 (circles) and M = 4

(squares) as a function of c
(1)
p − c

(2)
p . The solid black line indicates

the preset significance level α.

is powerful: When c
(1)
1 − c

(2)
1 = −0.04 (c

(1)
1 = 0.76, c

(2)
1 = 0.8),

corresponding to values that are in practice considered as being very

close, the test rejects the time constancy hypothesis for c1 with a

probability above 0.6 (M = 2) and close to 0.5 (M = 4). Con-

versely, the mean test decisions d̄c2 reproduce closely the preset sig-

nificance levelα and remain constant when c
(1)
1 −c

(2)
1 varies, indicat-

ing that the time constancy test for c2 is not subject to cross-influence

from changes in c1. We conclude, first, that the test for time con-

stancy of c1 is powerful, and second, that the test for constancy of c2
closely reproduces the level α, independently of c

(1)
1 − c

(2)
1 .

Constant c1, non constant c2. In the second case, which we de-

note H1(c2), we set c
(1)
2 6= c

(2)
2 and c

(1)
1 ≡ c

(2)
1 = c1, i.e., c1 is

constant, while c2 is not. Therefore, d̄c2 assesses the power of the

test for time constancy of c2. The parameters are set to c1 = 0.75

and c
(1)
2 = {−0.11,−0.09, · · · ,−0.01}, c

(2)
2 = −0.01. Fig. 1

(bottom) shows test decisions d̄c1 (solid red line) and d̄c2 (dashed

blue line) as a function of the step size c
(1)
2 − c

(2)
2 . Exchanging the

roles of d̄c1 and d̄c2 , conclusions are similar to those obtained under

H1(c1): satisfactory power of the test for time constancy of c2, and

insensitivity of the test on c1 with respect to level change c
(1)
2 −c

(2)
2 .

Null distribution estimation underH1. Fig. 2 shows bootstrap test

critical values (as defined in Eq. (7)) T ∗
c1,C under H1(c1) (left) and

T ∗
c2,C under H1(c2) (right). The circles and the bars correspond,

respectively, to bENMCT
∗
θ,C and to 1.64 · dStdNMCT

∗
θ,C . We observe

that the T ∗
cp,C do not depend on the step size c

(1)
p − c

(2)
p and thus

on the precise hypothesis H1. Moreover, the T ∗
cp,C equal the critical

values underH0 (given by the rightmost points). This shows that the

empirical distribution of T ∗
θ under H1 provides us with a robust and

accurate null distribution estimation, as test design demands.

6. CONCLUSIONS AND PERSPECTIVES

We have devised a practical procedure for discriminating the exis-

tence of true scaling properties against non stationarities. It consists

of a bootstrap based test for the constancy along time of wavelet
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Fig. 2: Bootstrap test critical values T ∗
θ,C underH1 (mean value and

1.64σT∗

θ,C
bars, obtained through Monte Carlo simulations): Left,

T ∗
c1,C under H1(c1); Right T ∗

c2,C under H1(c2) (M = 2).

Leader based multifractal parameter estimates. We have shown, by

means of numerical simulations, that this bootstrap based test proce-

dure is reliable and powerful. Notably, the empirical distribution of

T ∗
θ under H1 yields an accurate estimation of the null distribution, a

central feature for relevant test design. Our procedure successfully

addresses this nontrivial issue by combining a "split then bootstrap"

for Tθ and a "bootstrap then split" for T ∗
θ . It has heavy computational

cost (due to double bootstrap) but remains, to the best of our knowl-

edge, the only procedure practically available. It can be applied to a

single observation of real data with unknown statistical characteris-

tics. The impact of choosing M remains to be discussed in terms of

standard trade-off between type-I and type-II errors: A test with too

small M may miss non stationarities, choosing M too large results

in a lack of power due to poor estimations, hence the existence of an

optimalM for a given but unknown alternative hypothesis. The pro-

cedure can be further extended to testing the constancy along time

of the whole structure functions (S(2j , q), C(2j , p)) or to testing

jointly the constancy of a vector of multifractal attributes. This test

is being applied to a set of biomedical data.
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