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ABSTRACT

This paper presents novel results on scalar feedback quantization
(SFQ) with uniform quantizers. We focus on general SFQ config-
urations where reconstruction is via a linear combination of frame
vectors. Using a deterministic approach, we derive two necessary
and sufficient conditions for SFQ to be optimal, i.e., to produce, for
every input, a quantized sequence that is a global minimizer of the
2-norm of the reconstruction error. The first optimality condition is
related to the design of the feedback quantizer, and can always be
achieved. The second condition depends only on the reconstruction
vectors, and is given explicitly in terms of the Gram matrix of the re-
construction frame. As a by-product, we also show that the the first
condition alone characterizes scalar feedback quantizers that yield
the smallest MSE, when one models quantization noise as uncorre-
lated, identically distributed random variables.

Index Terms— Frames, Quantization, Sigma-Delta Modulation.

1. INTRODUCTION

In many signal processing applications, signals have to be repre-
sented by a series of numbers (samples), so that they can be pro-
cessed, transmitted or stored in digital form. This paradigm requires
sampling, quantization and reconstruction.

The quantization of the samples, namely the sequence {cj}Nj=1,

N ∈ N, yields a sequence {μj}Nj=1 whose elements are constrained
to belong to a discrete set of scalars. We focus our attention on
uniform quantization, and thus require that

μj ∈ U, ∀j ∈ {1, ..., N}; U � {kΔ : k ∈ Z,Δ ∈ R+}. (1)

where U is the quantization alphabet.
The simplest and most common paradigm to recover the signal

from the numbers is linear reconstruction. Here, one is able to re-
cover the original signal, say a, via

a =
XN

j=1
cjψj , (2)

In (2), {ψj}Nj=1 is a set of vectors (a frame) in the reconstruction

Hilbert space W (typically a subspace of �2 or of L2). Thus, the
samples {cj}Nj=1 are the frame expansion coefficients of a. Exam-
ples of linear reconstruction are the Shannon-Whittaker reconstruc-
tion formula, the reconstruction stage in filter-banks, and the inverse
wavelet-transform.

Throughout this work, we will be concerned with the squared
2-norm of the reconstruction error, i.e.,

D(c,μ) �
‚‚‚a−

XN

j=1
μjψj

‚‚‚2

=
‚‚‚XN

j=1
(μj−cj)ψj

‚‚‚2

, (3)
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where ‖·‖2 = 〈·, ·〉W (the latter being the inner product in W).
An optimal vector quantizer [1], which jointly quantizes the en-

tire sequence c, yields the minimum achievable distortion

D�(c) � min
μ∈UN

D(c,μ), (4)

for every c ∈ RN . Unfortunately, minimization of (3) subject to (1)
is a non-convex optimization problem. Moreover, the complexity of
solving this problem grows exponentially with the number of coef-
ficients to be quantized. In addition, unless {ψj}Nj−1 forms an or-
thogonal set, one would need to “preview” the entire input sequence
before being able to calculate any optimal quantized value for μj .
This is incompatible with delay sensitive applications.

For the above reasons, in practice quantization is often accom-
plished via simpler sub-optimal methods that operate sequentially.
The simplest of these correspond to scalar feedback (SF) quantizers.
At the i-th iteration, these A/D converters obtain the output sample1

ui by simple scalar quantization of an auxiliary sequence, which is
a linear combination of input and output samples, i.e.,

ui = Q
“X

j:j≤i
αi,jcj +

X
j:j<i

βi,j(uj − cj)
”
. (5a)

In (5), the real scalars αi,j , βi,j , i, j ∈ {1, 2, . . . , N} are design
parameters, and Q(·) is the nearest neighbour scalar quantization
function

Q(v) � argmin
μ∈U

|v − μ| , ∀v ∈ R. (5b)

The above expressions can be used to describe many scalar quanti-
zation schemes, including PCM, DPCM and (multi-bit) Sigma-Delta
(ΣΔ) converters [2]. The latter have been well studied in the con-
text of shift-invariant reconstruction spaces (wherein reconstruction
is done by LTI filters), and recently also for frame expansions (see,
e.g., [3, 4]).

Not surprisingly, for a given reconstruction frame, and in return
for the above mentioned shortcomings, optimal vector quantization
generally outperforms SFQ. However, it is not known under what
conditions this performance gap exists. In this paper we derive those
conditions. More precisely, we state necessary and sufficient condi-
tions for SFQ to be optimal, i.e., to yield, for any input c, the quan-
tized output sequence μ that minimizes D(c,μ) in (3). Our results
extend the work documented in [5, 6] to more general situations.

Notation We use bold lowercase letters, e.g. x, to denote both the
sequence {xj}Nj=1 and the column vector [x1 · · · xN ]T , where the
meaning is clear from the context. We also use bold letters to rep-
resent matrices (uppercase) and their corresponding column vectors
(lowercase). For example, if G is a matrix, we use gi to refer to the
i-th column of G, and gi,j to refer to the j-th element of gi. The
null space and the Moore-Penrose pseudo-inverse of a matrix G are

1Hereafter we use μ to denote arbitrary quantized values and reserve the
symbol u for the output of the SF quantizer.
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denoted respectively via N (G) and G†. The notation Gi refers to
the sub-matrix obtained by removing the first i columns and i rows
from G. Similarly, xj denotes the vector x without its first j ele-
ments. The symbol 0N denotes an N -length column vector of zeros.
We use the short-hand notation ‖x‖2G for the quadratic form xTGx.
We write ”iff” as an abbreviation for ”if and only if”. Z corresponds
to the integers, and we use ZN to denote the set of all N -length vec-
tors with integer elements. We say a matrix or vector is integral iff
all its elements are integers.

2. PRELIMINARIES

2.1. Brief Overview of Frames

Here we will first present some facts regarding frames that will be
used in our subsequent analysis2.

A finite frame for a Hilbert space W is an ordered set of vectors
{ψj}Nj=1 ⊂ W such that, for every w ∈ W ,

A‖w‖2 ≤
XN

j=1
|〈w, ψj〉W |2 ≤ B‖w‖2, (6)

where the scalar constants A,B satisfy 0 < A ≤ B <∞.
The synthesis operator Ψ : �2 → W of the frame {ψj}Nj=1 is

defined via

Ψc =
XN

j=1
cjψj , ∀c ∈ �2, (7)

where �2 denotes the set of square-summable sequences. The Gram
matrix G ∈ RN×N of the frame {ψj}Nj=1 is defined element-wise
via

Gj,k � 〈ψj , ψk〉, j, k ∈ {1, . . . , N}. (8)

It thus follows that

〈Ψx,Ψy〉W = xTGy, ∀x,y ∈ �2 (9)

which implies that G is positive semi-definite, and, in particular, that

‖Ψe‖2W = ‖e‖2G, ∀e ∈ �2. (10)

2.2. Feedback Quantization of Frame Expansions

It is easy to show from (5) that an SF quantizer cannot yield
D(c,u) = D�(c) for all c ∈ RN unless3 αi,j = δi,j , ∀i, j, where
δi,j is the Kronecker delta function. If the latter holds, then (5) can
be written as follows:

u � Q(v); v � c− Fn; n � u− v, (11)

where Q(v) = [Q(v1) · · · ,Q(vN )]T , F is the feedback matrix
and n is the vector of quantization errors. In order for the above
equations to be well defined, F needs to be lower strictly-triangular,
i.e., lower triangular with all main diagonal elements equal to zero4.
Notice also that F is the only degree of freedom in the design of an
SF quantizer.

In order to determine D(c,u) for SF quantizers, it is convenient
to define the noise shaping matrix

S � (IN − F), (12)

where IN denotes the N × N identity matrix. Clearly, S is con-
strained to be lower unit-triangular, i.e., lower triangular with all its
main diagonal elements equal to 1.

2A deeper treatment of the subject can be found, e.g., in [7].
3To verify this, it suffices to consider an input sequence c ∈ U

N in (5a).
4Otherwise (11) cannot be solved sequentially.

Substituting (12) into (11) yields u = c + Sn. Using this, and
substituting (10) and (7) into (3), the distortion achieved by SFQ can
be written as

D(c,u) = ‖Ψ(u− c)‖2W = ‖u− c‖2G = nTSTGSn. (13)

3. MAIN RESULT

We can now state the main result of this paper.

Theorem 1 For any given reconstruction frame with Gram matrix
G ∈ RN×N , the distortion D(c,u) of an SF quantizer equals
D�(c) for all c ∈ RN iff the following two conditions hold:

(i) The columns of the associated feedback matrix F satisfy

f ii =mi + ς i, ∀i ∈ {1, . . . , N}, (14a)

where mi � Gi†gii, ∀i ∈ {1, . . . , N}, (14b)

and where the vectors {ς i}Ni=1 satisfy ς i ∈ N (Gi), but are
otherwise arbitrary.

(ii) For every i ∈ {1, . . . , N}, ∃ξi ∈ N (Gi) such that

mi + ξi ∈ ZN−i, (15)

i.e., such that mi + ξi is an integral vector. �

Notice that (i) describes a “matching” condition between the
feedback matrix and the reconstruction frame. Thus, (i) can al-
ways be satisfied by a proper choice of F (which is given explic-
itly by (14)). On the other hand, condition (ii) depends only on the
reconstruction frame, or more precisely, on its Gram matrix.

The proof of Theorem 1 will be given in Section 6, based on
preliminary results given in Sections 4 and 5. The latter provide
valuable insight into the SFQ problem, and stem from two alternative
approaches: lattice quantization and dynamic programming.

4. LATTICE QUANTIZATION FORMULATION
In this section we use the fact that minimization of (3) subject

to (1) is equivalent to a lattice quantization problem. To show this,
we first note that any symmetric positive semidefinite matrix G ∈
RN×N can be decomposed as

G = HTH, (16)

where H ∈ RN×N is lower triangular (see., e.g., [8]). It then follows
directly from (9) and (16) that 〈Ψx,Ψy〉W = 〈Hx,Hy〉, ∀x,y ∈
�2. Thus, one can analyze the relationship between the images in W
through Ψ of any group of sequences by looking at their images in
�2 through H. In particular,

D(c,μ) =‖Ψ(μ − c)‖2W =‖Hμ −Hc‖2 =‖μ − c‖2G, (17)

see (13) and (8).
Since the quantization alphabet U is uniform (see (1)), the im-

ages through H of all the sequences μ ∈ UN constitute the recon-
struction lattice

L � {Hμ : μ ∈ UN} = HZNΔ. (18)

Accordingly, we say that HΔ is the generating matrix for L. Every
lattice has a basic Voronoi cell, V0, associated with it, i.e., the region
of points closer to the origin than to any other point in the lattice.
More precisely,

V0 � {x = Hc : c ∈ RN , ‖x‖ ≤ ‖x− β‖, ∀β ∈ L}. (19)
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The Voronoi region around a lattice point Hμ ∈ L is the region
V(Hμ) � Hμ + V0. Similarly, we define the quantization cell
around Hμ ∈ L of an SFQ converter as

C(Hμ) � Hμ +HSY, (20)

where the hyper-cube Y � {η : ηj ∈ [−Δ
2
, Δ

2
], ∀j ∈ {1, . . . , N}}

is the set containing all possible5 quantization noise sequences.
Thus, C(Hμ) is the set of all target points Hc for which an SF
quantizer outputs the sequence μ.

With the above definitions, we can now prove the necessity of
condition (i) of Theorem 1.

Lemma 1 For a reconstruction frame with gram matrix G, the dis-
tortion D(c,u) of an SF quantizer can equal D�(c) for all c ∈ RN

only if condition (i) in Theorem 1 holds. �

Proof 1 In view of (17) and (19), an SF quantizer is optimal (i.e.,
D(c,u) = D�(c), ∀c ∈ RN ) iff C(0N ) = V0. A key property of V0

is that it has the minimum second moment among all the cells whose
L-translations form a tessellation6, see [1]. Thus, an SF quantizer
is a candidate to be optimal only if its matrix F minimizes the sec-
ond moment of C(0N ). This second moment can be readily shown to
be given by ΔN+2

12
trace{STGS} = ΔN+2

12
trace{(I − F)TG(I −

F)}. By using (16), the i-th element of the trace can be written as
‖H[0Ti−1 1 − f ii

T
]T ‖2 = (Hi,i)

2 + ‖hi
i −Hif ii ‖2, since H is

lower triangular and F is lower strictly-triangular. The fact that
each trace term depends only on its corresponding column of F im-
plies that the trace is minimized iff each f ii minimizes ‖hi

i −Hif ii ‖2.
Clearly, this happens iff

f ii = Hi†hi
i + ς i, ∀i ∈ {1, . . . , N}, (21)

where ς i is an arbitrary vector in N (Hi) (and, thus, in N (Gi)
as well). Substitution of the identity A† = (ATA)†AT into (21)
yields (14), thus completing the proof. �

Remark 1 If one models n as a vector of uncorrelated, uni-
formly distributed (u.u.d), random variables, one gets MSE =
ΔN+2

12
trace{STGS} = ΔN+2

12
trace{(I− F)TG(I− F)}. On the

other hand, an SF quantizer whose feedback matrix satisfies (21)
happens to characterize one of the noise shaping quantizers for
frame expansions proposed in [3]. More precisely, condition (i)
is satisfied by the variant in which the error associated with each
quantized coefficient is projected onto all the coefficients ahead of
the current iteration coefficient. Thus, Lemma 1 also shows that,
using an u.u.d model for quantization errors, the latter scheme
achieves the minimum MSE among all SF quantizers7. �

5. DYNAMIC PROGRAMMING FORMULATION

Sequential quantization methods, such as SFQ, decide upon the
value of each output coefficient sequentially. Insight can be gained
by analyzing them from a dynamic programming point of view. The
key point is that each of the decisions contributes additively to the

5Assuming the set of possible input sequences c is compact and big
enough for its image through H to contain at least one quantization cell.

6 We use the term “L-translates of a cell S” to denote the set {S + β :
β ∈ L}. The latter forms a tessellation if its cells cover the entire space
without overlapping.

7It is easy to show that this result actually holds not only for a uniform
distribution, but also for any sample distribution.

cost defined in (3), leaving, after each step, a sub-problem similar
in form to the original one. In turn, each of these sub-problems is
determined by the decisions already made. The following result
allows us to formalize these observations

Lemma 2 (Cost Decomposition) Let G ∈ RN×N be a positive
semi-definite, symmetric matrix. Then, ∀i ∈ {1, 2, . . . , N}, and
∀x, t ∈ RN , the following holds:

‖xi−1−ti−1‖2Gi−1=Ki(xi −ti)2+ ‖xi−ti+ f ii (xi−ti)‖2Gi ,

where the scalars Ki are defined as
Ki � Gi,i − gii

T
Gigii, ∀i ∈ {1, . . . , N}, (22)

and where the vectors {f ii }Ni=1 satisfy (14). �

Proof 2 The result follows from direct algebraic manipulation,
using the identity A†AA† = A† and from the fact that gii

T
=

gii
T
Gi†Gi, ∀i ∈ {1, . . . , N} (which stems from G being positive

semidefinite). �

Recursive application of Lemma 2 to (17) allows one to split the
total cost D(c,μ) as follows:

D(c,μ) = ‖μ − t0‖2G =
Xi−1

j=1
Kjη

2
j + ‖μi − tii‖2Gi , (23)

see (17), where the scalars Kj are defined in (22), and where

ηj � μj − tj,j ; tj � tj−1 − fj−1ηj−1, ∀j, (24)

with t0 � c.
The summation on the right hand side of (23) represents the (ir-

reducible) reconstruction error stemming from the first i − 1 deci-
sions. The cost-to-go after decision i − 1 is the last term in (23). It
has the same form as the original cost, but it contains the updated
target vector tii. The latter can be regarded as a state vector which
summarizes the effect of ci, and of previous decisions, on the cost-
to-go.

6. PROOF OF THEOREM 1

Joint Sufficiency of (i) and (ii) It is well known in lattice theory
that any two lattices L1 =M1ZN and L2 =M2ZN , with M1 and
M2 non-singular, are equal iff there exists an integral matrix T with
det{T} = ±1 such that M1 = TM2 (see, e.g., [9]). On the other
hand, if conditions (i) and (ii) hold, then there exists a lower strictly-
triangular matrix Ξ ∈ N (H) such that S+ Ξ is integral. Since S is
lower unit-triangular, we have that det{S} = det{S+Ξ} = 1, and
thus ZN = (S + Ξ)ZN . It then follows that L = HZN = H(S +
Ξ)ZN = HSZN . On the other hand, if condition (i) holds, then it
follows directly from (21) that the product HS yields an orthogonal,
lower triangular matrix. This in turn implies that L is a rectangular
lattice. Moreover, it is easy to verify that the associated Voronoi
cell V0 is given by the hyper-rectangle HSY , which is precisely the
quantization cell of the SF quantizer, C(0N ) (see (20)). Therefore (i)
and (ii) guarantee that the corresponding SF quantizer is optimal.

Necessity of Conditions (i) and (ii) The necessity of (i) was
shown in Lemma 1. Thus, it suffices to prove the necessity of (ii)
assuming that (i) holds. If (i) holds, then the target vectors tj given
in (24) can be written in terms of the feedback matrix F as follows

tj = c− F

»
Ij−1 0N−j+1

0N−j+1 0N−j+1

–
η. (25)
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Since F is lower strictly-triangular, we have from (25) that

tj,j = cj − [Fj,1 · · ·Fj,N ]η. (26)

If μj = Q(tj,j), then tj,j = vj , and ηj = nj (see (11)).

Now let us consider a vector c such that the target vector, at
iteration i− 1, satisfies8

ti−1,i−1 = ϑ1 − Δ
2
− ε (27a)

tii−1 = ϑ1 + f ii (ϑ1 − ti−1,i−1), (27b)

for some ϑ ∈ UN−i+1 and some ε ∈ (0,Δ). With the above target,
an SF quantizer would choose μi−1 = Q(ti−1,i−1) = ϑ1 −Δ, and
thus ηj−1 = ε − Δ

2
. Then, from (23), the cost-to-go for the SF

quantizer after i− 2 iterations can be split as

‖μi−1 − ti−1
i−1‖2Gi−1 = Ki−1(ε− Δ

2
)2 + ‖μi − ϑ1 − f iiΔ‖2Gi ,

where Lemma 2 and (27) have been used. On the other hand, from
Lemma 2 and (27), the cost-to-go for the choice μi−1 = ϑ is

‖ϑi−1 − ti−1
i−1‖2Gi−1 = Ki(ϑ1 − t1)

2 = Ki(
Δ
2
+ ε)2. Therefore,

the minimum difference between the cost-to-go achievable by SFQ
and that of the choice μi−1 = ϑ is

min
μi∈UN−i

‖μi − ϑ1 − f iiΔ‖2Gi −Ki−1εΔ

= min
μi∈UN−i

‖μi − f iiΔ‖2Gi −Ki−1εΔ. (28)

If (15) is not satisfied for some i ∈ {1, 2, . . . , N}, then f iiΔ /∈
UN−i, and �μi ∈ UN−i such that (μi + f iiΔ) ∈ N (Gi). As a
consequence, the first term on the right hand side of (28) is strictly
positive. It then follows that D(c,u) is strictly larger than D�(c),
for sufficiently small values of ε, completing the proof. �

7. ANALYSIS OF THE RESULT

Lattice Quantization Interpretation It has been shown in the
proof of Theorem 1 that (ii) is a sufficient condition for L to be rect-
angular and have a hyper-rectangular Voronoi cell. It is important
to note that this can happen for a non-diagonal reconstruction Gram
matrix, i.e., reconstruction vectors that are non-orthogonal, and even
linearly dependent, since G is not required to be non-singular. It is
also important to note that the converse does not necessarily hold,
that is, a rectangular L does not ensure that condition (ii) is satisfied.
More precisely, the fact that a lattice L = HZN is rectangular
implies the existence of an integral matrix M with det{M} = ±1
such that HM is orthogonal. It doesn’t guarantee M to be also
lower unit-triangular, as required by (ii). On the other hand, (i)
alone implies HS is orthogonal, and thus C(0N ) = HSY is hyper-
rectangular. For a uniformly distributed c, the MSE gap between
such an SF quantizer and a lattice vector-quantizer is given by the
difference between the second moments of C(0N ) and V0. Although
no closed from expressions are known for the second moment of V0

of arbitrary lattices, preliminary results suggest that it is possible to
derive lower bounds for this gap from the non-integer part of the
vectors mi defined in (14b).

8Such a vector always exists, since, from (26), ti−1,i−1 depends only on

the elements {ck}i−1
k=1, while, from (25), tii−1 can be chosen independently

by choosing {ck}Nk=i+1.

Reconstruction by a Single LTI Filter By letting N → ∞
(and considering the distortion per sample D(c,μ)/N as the cost
function), our results can be applied to cases where reconstruc-
tion is achieved using a discrete-time LTI filter, say R(z). With-
out loss of generality, we assume that limz→∞R(z) = 1. In
this case, the reconstruction frame vectors take the form ψk =
[0Tk−1 r(0) r(1) · · · ]T , where r(·) is the impulse response of R(z).
This setup turns F and H into infinite dimensional Toeplitz matri-
ces, the first column of H being ψ1. In turn, f1 can be seen as the
impulse response of a filter F (z). It then follows that the orthog-
onality of the columns of HS stemming from (i) is equivalent to
having 1−F (z) = R(z)−1. This corresponds to a whitening noise-
shaping quantizer, which yields minimum MSE, in the alternative
white quantization noise paradigm [2]. Similarly, an SFQ satisfying
(i) also minimizes the MSE, see Remark 1. On the other hand, for
this case, all the vectors mi (see (14b)) are equal to the impulse
response (first sample removed) of F (z). Thus, (ii) translates into
having the impulse response of 1 − R(z)−1 being integer-valued.
Hence, the standard L-th order multi-bit ΣΔ converter is optimal
for R(z) = (1 − z−1)−L. This extends the results reported in [6],
obtained for U = {−1, 1}.

8. CONCLUSIONS

We derived necessary and sufficient conditions that make scalar
feedback quantization deterministically optimal, in the sense of gen-
erating, for any input, the quantized sequence that minimizes the
2-norm of the reconstruction error. The first condition, which de-
pends only on the design of the scalar feedback quantizer, happens
to characterize the best quantizer of this class, when a stochastic
framework is adopted. The second condition depends only on the
Gram matrix of the reconstruction frame, and can be satisfied for
non-orthogonal, and even linearly dependent, reconstruction vectors.
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