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LARGE DEVIATIONS ANALYSIS FOR THE DETECTION OF 2D HIDDEN
GAUSS-MARKOV RANDOM FIELDS USING SENSOR NETWORKS

Youngchul Sung†, H. Vincent Poor and Heejung Yu

ABSTRACT

The detection of hidden two-dimensional Gauss-Markov random fields us-
ing sensor networks is considered. Under a conditional autoregressive
model, the error exponent for the Neyman-Pearson detector satisfying a
fixed level constraint is obtained using the large deviations principle. For
a symmetric first order autoregressive model, the error exponent is given
explicitly in terms of the SNR and an edge dependence factor (field cor-
relation). The behavior of the error exponent as a function of correlation
strength is seen to divide into two regions depending on the value of the
SNR. At high SNR, uncorrelated observations maximize the error exponent
for a given SNR, whereas there is non-zero optimal correlation at low SNR.
Based on the error exponent, the energy efficiency (defined asthe ratio of
the total information gathered to the total energy required) of ad hocsen-
sor network for detection is examined for two sensor deployment models:
an infinite area model and and infinite density model. For a fixed sensor
density, the energy efficiency diminishes to zero at rateO(area−1/2) as
the area is increased. On the other hand, non-zero efficiencyis possible for
increasing density depending on the behavior of the physical correlation as
a function of the link length.

Index Terms- Neyman-Pearson detection, error exponent, GMRF

1. INTRODUCTION
Consider the design of a sensor network for the detection of a
correlated stochastic signal in a fixed area. Many questionsarise
in such a design: How do the field correlation and measurement
signal-to-noise (SNR) affect the detection performance? What is
the optimal sensor density, i.e., the number of nodes per unit area?
What is the information and energy trade-off in such a sensornet-
work with ad hocrouting? To address these issues, several studies
based on one-dimensional (1D) spatial signal models have been
conducted (see, e.g., [1] and [2]). However, there is an important
difference between 1D signal models and actual spatial signals.
Suppose that we take observations from sensors placed equidis-
tantly along a line transect laid over a given area. The observations
may then be viewed as samples generated by a one-dimensional
process and the results from time series analysis could be applied
to investigate their statistical properties. However, there is no real
notion of ‘signal flow’ or dependence direction along the transect
as there is in a more traditionally obtained time series. Forsam-
ples from sensors deployed over a two-dimensional (2D) area, it
is necessary to consider the signal dependence in all direction in
the plane, and as a consequence, answering the above questions
becomes more difficult.

To address the above questions in a 2D setting, in this pa-
per, we consider the detection of 2D Gauss-Markov random fields
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(GMRFs) using noisy observations. In particular we consider Sen-
sorsij located on a 2D latticeI. On denoting the (noisy) measure-
ments of Sensorij asYij and adopting a Neyman-Pearson formu-
lation, we can model the detection problem via null and alternative
hypotheses given by

H0 : Yij = Wij , ij ∈ I vs. H1 : Yij = Xij +Wij , ij ∈ I, (1)

where{Wij} represents independent and identically distributed
(i.i.d.) N (0, σ2) noise with a known varianceσ2, and{Xij} is
a stationary GMRF on the 2D latticeI independent of the mea-
surement noise{Wij}. Thus, the observation samples form a 2D
hidden GMRF underH1. PSfrag replacements

(i, j)

Xij

Xij

Wij

Yij

Yij

Sensorij

r

r

Fig. 1. Sensors on a 2D LatticeI: Hidden Markov Structure

1.1. Summary of Results
The exact error probability of the detection of the Neyman-Pearson
test is not available in closed-form in the general correlated case,
including the hypotheses (1). Hence, we invoke the the largedevi-
ations principle and use theerror exponentof the detection prob-
ability (or, more conveniently, its complement, the miss probabil-
ity) as an alternative performance measure. For a fixed false-alarm
level, the miss probabilityPM decays exponentially as the sample
sizen increases, and the error exponent is defined as the rate of
exponential decay, i.e.,

K
∆
= lim

n→∞
−

1

n
logPM (2)

under the given constraint (i.e., the false alarm probability PF ≤
α). The error exponent is a good performance criterion in the large
sample regime since it allows the designer to estimate the number
of samples required for a given detection performance. Hence,
efficient design can be examined through the error exponent for
large scale sensor networks.

Here, we adopt theconditional autoregression (CAR) model
for the signal, and derive a closed-form expression for the error
exponentK of the miss probability (which is independent ofα) in
the spectral domain. We do so by exploiting the spectral structure
of the CAR signal and the relationship between the eigenvalues of
the block circulant approximation to a block Toeplitz matrix de-
scribing the 2D correlation structure. In particular, it isshown that
the error exponent for the detection of 2D hidden GMRF is an ex-
tension of that in the 1D case obtained by Sung et al.[3]. As inthe
1D case, it is shown that i.i.d. (and, thus, uncorrelated) observa-
tions maximize the error exponent for a given SNR when the SNR
is high. On the other hand, there is an optimal non-zero degree of
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correlation at low SNR. Interestingly, it is seen that thereis a dis-
continuity in the optimal correlation strength as a function of SNR.
In the perfectly correlated case, the error exponent is zeroas ex-
pected. For the error exponent as a function of SNR, we will show
that the error exponent increases aslog SNR for a given correlation
strength at high SNR.

We consider two asymptotic regimes modelling the sensor de-
ployment in 2D: an infinite area model with a fixed density and an
infinite density model with a fixed area. Applying the results, we
obtain the asymptotic behavior of the energy efficiency, defined as
the ratio of the total information gathered to the required energy to
obtain information from the area for an ad hoc network with mini-
mum hop routing to the fusion center. For the infinite area model,
the energy efficiency decays to zero with rateO(area−1/2) as we
increase the coverage area. For the infinite density model, on the
other hand, a non-zero efficiency is possible if the decay rate of the
error exponentK(density) as a function of density is slower than
O(density(1−δ)/2), whereδ is the propagation constantδ ≥ 2.

1.2. Related Work
The detection of Gauss-Markov processes in Gaussian noise is a
classical problem. See [4] and references therein. However, most
work in this area considers only 1D signals or time series. A
closed-form error exponent was obtained and its propertieswere
investigated for 1D hidden Gauss-Markov random processes [3].
Large deviations analyses were used to examine the issues ofop-
timal sensor density and optimal sampling were examined with a
1D signal model in [1] and [2].

An error exponent was obtained for the detection of 2D GM-
RFs in [5], where the sensors are located randomly and the Markov
graph is based on the nearest neighbor dependency enabling a
loop-free graph and further analysis. In this work, however, the
measurement noise was not captured. Our work here focuses on
the error exponent for the detection of 2DhiddenGMRF on a 2D
infinite lattice, which allows for the consideration of measurement
noise. In particular we examine the above CAR model and inves-
tigate of the detection performance with respect (w.r.t.) to various
design parameters such as correlation strength, measurement SNR,
sensor density and area.

2. DATA MODEL

Definition 1 (GMRF [6]) A random vectorX = (X1, X2, · · · , Xn)
∈ R

n is a Gauss-Markov random field w.r.t. a labelled graph
G = (ν,E) with meanµ and precision matrixQ > 0, if its prob-
ability density function is given by

p(X) = (2π)−n/2|Q|1/2 exp

„

−
1

2
(X− µ)TQ(X− µ)

«

, (3)

andQlm 6= 0 ⇐⇒ {l, m} ∈ E for all l 6= m. Here,ν is the set of
all nodes{1, 2, · · · , n} andE is the set of edges connecting pairs
of nodes, which represent the conditional dependence structure.

Note that the mean and the precision matrix fully characterize
a GMRF. Note also that the covariance matrixQ−1 is completely
dense in general while the precision matrixQ has nonzero ele-
mentsQlm only when there is an edge between nodesl andm in
the Markov random field. Hence, when the graph is not fully con-
nected, the precision matrix is sparse. The 2D indexing scheme
(i, j) can be properly converted to an 1D scheme to apply Defini-
tion 1. From here on, we use the 2D indexing scheme for conve-
nience.

Definition 2 (Stationarity) A 2D GMRF on 2D doubly infinite
lattice I∞ is said to be stationary if the mean vector is constant

and Cov(Xij , Xi′j′)
∆
= E{XijXi′j′} = c(i − i′, j − j′) for

some functionc(·, ·).
For a 2D stationary GMRF{Xij}, the covariance{γij} is defined
as

γij = E{Xi′j′Xi′+i,j′+j} = E{X00Xij}, (4)

which does not depend oni′ or j′ due to the stationarity. Further,
the spectral density function of a zero-mean and stationaryGaus-
sian process{Xij} onI∞ with covarianceγij is defined as

f(ω1, ω2) =
1

4π2

X

ij∈I∞

γij exp(−ι(iω1 + jω2)), (5)

whereι =
√−1 and(ω1, ω2) ∈ (−π, π]2. Note that this is a 2D

extension of the conventional 1D discrete-time Fourier transform
(DTFT).
Definition 3 (The conditional autoregression (CAR)) A GMRF
can be specified using a set of full conditional normal distributions
with mean and precision:

E{Xij |X−ij} = −
1

θ00

X

i′j′∈I∞ 6=00

θi′j′Xi+i′,j+j′ , (6)

Prec{Xij |X−ij} = θ00 > 0, (7)

whereX−ij denotes the set of all variables exceptXij .
It is shown that the GMRF defined by the CAR model (6) - ( 7) is
a zero-mean stationary Gaussian process onI∞ with the spectral
density function [6]

f(ω1, ω2) =
1

4π2

1
P

ij∈I∞
θij exp(−ι(iω1 + jω2))

(8)

if

|{θij 6= 0}| < ∞, θij = θ−i,−j , θ00 > 0, (9)

{θij} is so thatf(ω1, ω2) > 0, ∀(ω1, ω2) ∈ (−π, π]2. (10)

We assume that the 2D stochastic signal in (1) is given by a sta-
tionary GMRF defined by the CAR model (6) - (7) and (9) - (10).
Then, the observation spectrum under the two hypotheses (1)are
given, respectively, by

Sy
0 (ω1, ω2) =

σ2

4π2
and Sy

1 (ω1, ω2) =
σ2

4π2
+ f(ω1, ω2).

3. PERFORMANCE MEASURE: ERROR EXPONENT

In this section, we investigate the performance of the Neyman-
Pearson detector with levelα ∈ (0, 1) for a 2D CAR signal in
noisy observations. We obtain the error exponent in the spectral
domain for this problem by exploiting the spectral structure of the
CAR signal and the relationship between the eigenvalues of block
circulant and block Toeplitz matrices representing 2D correlation
structure.

Theorem 1 (Error Exponent) Consider Neyman-Pearson detec-
tion between the hypotheses (1) with the model (6) - (7) and with
levelα ∈ (0, 1). Assuming that conditions (9 and 10) hold, the
error exponent of the miss probability is independent ofα and is
given by

K =
1

4π2

Z

π

−π

Z

π

−π

„

1

2
log

σ2 + 4π2f(ω1, ω2)

σ2

+
1

2

σ2

σ2 + 4π2f(ω1, ω2)
−

1

2

«

dω1dω2, (11)

=
1

4π2

Z

π

−π

Z

π

−π

D(N (0, Sy
0 (ω1, ω2))||N (0, Sy

1 (ω1, ω2)) dω1dω2,

whereD(·||·) denotes the Kullback-Leibler divergence.



Proof: K is given by the almost-sure limit of the asymptotic
Kullback-Leibler rateK = limn→∞

1
n log

p0,n
p1,n

(yn) evaluated under
p0,n[7]. Using the fact that we have Gaussian distributions under
both hypotheses, we have

K = lim
n→∞

1

n

„

1

2
log

det(Σ1,n)

det(Σ0,n)
+

1

2
y
T
n (Σ−1

1,n − Σ
−1
0,n)yn

«

,

Then approximating the block Toeplitz correlation matrix with a
block circulant matrix and applying the the 2D Grenander-Szegö
theorem, we obtain the limit of each term as follows.
1

n
log det(Σ1,n) →

1

4π2

Z

π

−π

Z

π

−π

log(σ2 + 4π2
f(ω1, ω2))dω1dω2,

1

n
log det(Σ0,n) → log σ

2
,

1

n
y
T
nΣ

−1
1,nyn →

1

4π2

Z π

−π

Z π

−π

σ2

σ2 + 4π2f(ω1, ω2)
dω1dω2,

1

n
y
T
nΣ

−1
0,nyn → 1,

almost surely.�

This theorem is a 2D extension of the error exponent of 1D
hidden Gauss-Markov model based on state-space structure ob-
tained in [3]. Intuitively, the error exponent (11) can be explained
using the frequency binning argument. For each 2D frequencyseg-
mentdω1dω2, the spectra are flat, i.e., the signals are independent
and Stein’s lemma can be applied for the segment. The overall
Kullback-Leibler divergence is the sum of contributions from each
bin.

3.1. Symmetric First Order Autoregression

To investigate the behavior of the error exponent as a function of
correlation and SNR, we further consider the symmetric firstorder
autoregression (SFAR), described by the conditions

E{Xij |X−ij} =
λ

κ
(Xi+1,j +Xi−1,j +Xi,j+1 +Xi,j−1),

Prec{Xij |X−ij} = κ > 0,

where0 ≤ λ ≤ κ
4

. (This is a sufficient condition to satisfy (9) -
(10).) Note here thatθ00 = κ andθ1,0 = θ−1,0 = θ0,1 = θ0,−1 =
−λ. In this model, the correlation is symmetric for each set of four
neighboring nodes. The SFAR model is a simple yet meaningful
extension of the 1D Gauss-Markov random process, which has the
conditional causal dependency only on the previous sample.Here
in the 2D case we have four neighboring nodes in the four (planar)
directions. The spectrum of the SFAR is given by

f(ω1, ω2) =
1

4π2κ(1− 2ζ cosω1 − 2ζ cosω2)
. (12)

We define theedge dependence factorζ by

ζ
∆
=

λ

κ
, 0 ≤ ζ ≤ 1/4. (13)

Note thatζ = 0 corresponds to the i.i.d. case whereasζ = 1/4
corresponds to the perfectly correlated case. Hence, the correlation
strength can be captured in this single quantityζ for SFAR signals.
The power of the SFAR is obtained using the inverse Fourier trans-
form via the relation (5), and is given by

Ps = γ00 =
2K(4ζ)

πκ
,

„

0 ≤ ζ ≤ 1

4

«

, (14)

whereK(·) is the complete elliptic integral of the first kind [8].
The SNR is given by SNR= Ps

σ2 = 2K(4ζ)

πκσ2 . Using eq. (11) and
the SNR, we obtain the error exponent in the SFAR signal case,
denoted byKs and given in the following corollary.

Corollary 1 The error exponent for the Neyman-Pearson detector
for the hypotheses (1) with the SFAR 2D signal model is given by

Ks =
1

4π2

Z

π

−π

Z

π

−π

„ 1

2
log

 

1 +
SNR

(2/π)K(4ζ)(1 − 2ζ cos ω1 − 2ζ cos ω2)

!

+
1

2

1

1 + SNR
(2/π)K(4ζ)(1−2ζ cos ω1−2ζ cos ω2)

−

1

2

«

dω1dω2. (15)

Note that the SNR and correlation are separated in (15), which
enables us to investigate the effects of each term separately.

3.2. Properties of the Error ExponentKs

First, it is readily seen from Corollary 1 thatKs is a continuous
function of the edge dependence factorζ (0 ≤ ζ ≤ 1/4) for a
given SNR. The values ofKs at the extreme correlations are given
by noting thatK(0) = π

2
and K(1) = ∞. Therefore, in the

i.i.d. case (i.e.,ζ = 0), the corollary reduces to Stein’s lemma as
expected, andKs is given by

Ks =
1

2
log(1+SNR)+

1

2(1 + SNR)
−

1

2
= D(N (0, σ2)||N (0, σ2+Ps)).

For the perfectly correlated case (ζ = 1/4), on the other hand,
Ks = 0. In fact, in this case as well as in the i.i.d. case, the
two-dimensionality is irrelevant. The known result thatPM ∼
Θ(n−1/2) for the perfectly correlated case is applicable.

For intermediate values of correlation, we evaluate (15) for
several different SNR values, as shown in Fig. 2. It is seen that at
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Fig. 2. Ks as a function ofζ: (a) SNR = 10 dB, (b) SNR = 0 dB,
(c) SNR = -3 dB, (d) SNR = -5 dB

high SNRKs is monotonically decreasing asζ increases. Hence,
i.i.d. observations give the best error performance for a given value
of SNR when SNR is large, as in the 1D case [3]. As we decrease
the SNR, it is observed that a second mode grows nearζ = 1/4.
As we further decrease the SNR, the value ofζ of the second mode
shifts toward1/4, and the value of the second mode exceeds that
of the i.i.d. case. Hence, there is a discontinuity in the optimal
correlation as a function of SNR in the 2D case even if the maximal
Ks itself is continuous. This is not the case in 1D.

With regard toKs as a function of SNR, it is straightforward
to see that it is continuous and increases at the ratelog SNR at high
SNR for a given value ofζ.



4. AD HOC NETWORKING: INFORMATION-ENERGY
TRADE-OFF

The analytical results in the previous section can be applied to an-
swer some fundamental questions in the design of sensor networks
for detection applications. We consider a planarad hocsensor net-
work with minimum hop routing. To simplify the analysis, we as-
sume that(2n+ 1)2 sensors are located on the grid[−n : 1 : n]2

with spacingrn, as shown in Fig. 1, and a fusion center is located
at the center(0, 0). We assume that the measurementYij is de-
livered to the fusion center using the minimum hop routing, which
requires a hop count of|i|+ |j|.
4.1. Physical correlation model

The actual physical correlation in this model can be obtained by
solving a proper continuous index 2D stochastic differential equa-
tion (SDE), e.g.,

"

„

∂

∂x

«2

+

„

∂

∂y

«2

− ξ2

#

X(x, y) = u(x, y),

whereu(x, y) is the process noise andξ is a parameter determin-
ing the correlation strength of the field. By solving a properSDE,
the edge correlation factorρ is given, as a function of the edge
lengthrn, by

ρ = f(rn).

Typically,f(·) is a positive and monotonically decreasing function
of rn. Further, we have a monotone mappingg : ρ → ζ from the
edge correlation factorρ to the edge dependence factorζ, which
maps zero and one to zero and 1/4, respectively. Thus, we have
ζ = g(f(rn)), and for given physical parameters (with a slight
abuse of notation),

Ks(SNR, ζ) = Ks(SNR, g(f(rn))) = Ks(SNR, rn).

We will use the arguments SNR andζ for Ks properly if necessary.

4.2. Energy efficiency
We now consider the energy efficiency of the ad hoc sensor net-
work as the network size grows. The energy efficiencyη can be
defined as

η =
total gathered informationIt

total required energyEt
, (16)

whereIt is given by the product of the number of sensors and
the informationKs per each sensor. We consider two asymptotic
regimes for the increase in network size: an infinite area model
with fixed density and an infinite density model with fixed area.
The behavior of the energy efficiency as we increase the network
size is summarized in the following theorems.

Theorem 2 (Infinite area model) For an ad hoc sensor network
with increasing area and a fixed node density, the energy efficiency
decays to zero as we increase the area with rate

η = O
“

area−1/2
”

. (17)

Proof: The total energy required for data gathering is given by

Et = Elink(rn)
n

X

i=−n

n
X

j=−n

(|i|+|j|) = 2n(n+1)(2n+1)Elink(rn),

where the transmission energy per linkElink(rn) = rδn andδ is
the propagation loss factor. We haveIt = (2n+ 1)2Ks(rn), and
area= Θ(n2). The energy efficiency is given by

η =
(2n+ 1)2Ks(rn)

2n(n+ 1)(2n + 1)Elink(rn)
. (18)

Sincern is fixed,Ks andElink do not change withn, and (17)
follows. �

Theorem 3 (Infinite density model) For the infinite density model,
a non-zero efficiency is possible if the decay rate of the error expo-
nentKs as a function of density is slower than

O
“

density(1−δ)/2
”

. (19)

Proof: For the infinite density model, we have

rn = Θ(n−1), rδn = Θ(n−δ), density= Θ(n2).

From (18), we haveη = Ks(rn)/n
1−δ . If Ks as a function ofrn

decays slower thann1−δ , η does not diminish to zero.�
The non-zero efficiency in the asymptotic regime depends on

the decay rate ofKs as a function ofrn. SinceKs(ζ) is given, this
depends on the functionsf andg in Section 4.1 and the propaga-
tion loss factorδ.

5. CONCLUSIONS

We have considered the detection of 2D GMRFs from noisy ob-
servations. We have adopted the CAR model for the signal, and
have used a spectral domain approach to derive the error expo-
nent for the Neyman-Pearson detector satisfying a fixed level con-
straint. Under the symmetric first order autoregressive model, we
have obtained the error exponent explicitly in terms of the SNR
and the edge dependence factor. We have investigated the proper-
ties of the error exponent as a function of SNR and correlation. We
have seen that the behavior of the error exponent w.r.t. correlation
strength is divided into two regions depending on SNR. At high
SNR, i.i.d. (and, thus, uncorrelated) observations maximize the
error exponent for a given SNR, whereas there is non-zero opti-
mal value of correlation at low SNR. Further, it has been seenthat
there is a discontinuity for the optimal correlation as a function of
SNR. Based on the error exponent, we have also investigated the
energy efficiency ofad hocsensor network for detection applica-
tions. For a fixed node density, the energy efficiency decays to zero
with rateO(area−1/2) as we increase the area. On the other hand,
non-zero efficiency is possible with increasing density depending
on physical correlation strength as a function of the link length.

6. REFERENCES

[1] Y. Sung, L. Tong and H. V. Poor, “Sensor configuration and activation for field
detection in large sensor arrays,” inProc. 2005 Information Processing in Sensor
Networks (IPSN), Los Angeles, CA, Apr. 2005.

[2] J.-F. Chamberland and V. V. Veeravalli, “How dense should a sensor network be
for detection with correlated observations?,”IEEE Trans. Inform. Theory, vol.
52, pp. 5099 - 5106, Nov. 2006.

[3] Y. Sung, L. Tong and H. V. Poor, “Neyman-Pearson detection of Gauss-Markov
signals in noise: Closed-form error exponent and properties,” IEEE Trans. In-
form. Theory, vol. 52, pp. 1354 - 1365, Apr. 2006.

[4] T. Kailath and H. V. Poor, “Detection of stochastic processes,”IEEE Trans. In-
form. Theory, vol. 44, pp. 2230 - 2259, Oct. 1998.

[5] A. Anandkumar, L. Tong and A. Swami, “Detection of Gauss-Markov random
field on nearest-neighbor graph,” inProc. 2007 IEEE International Conference
on Acoustics, Speech, and Signal Processing (ICASSP’07), Hawaii, USA, Apr.
2007.

[6] H. Rue and L. Held,Gaussian Markov Random Fields: Theory and Applicatons,
Chapman & Hall/CRC, New York, 2005.

[7] I. Vajda,Theory of Statistical Inference and Information, Kluwer Academic Pub-
lishers, Dordrecht, 1989.

[8] J. Besag, “On a system of two-dimensional recurrence equations,”Journal of the
Royal Statistical Society. Series B, vol. 43, no. 3, pp. 302 - 309, 1981.


	 Introduction
	 Summary of Results
	 Related Work

	 Data Model
	 Performance Measure: Error Exponent
	 Symmetric First Order Autoregression
	 Properties of the Error Exponent Ks 

	 Ad Hoc Networking: Information-Energy Trade-Off
	 Physical correlation model
	 Energy efficiency

	 Conclusions
	 References

