0801.3073v1 [cs.IT] 20 Jan 2008

arXiv

LARGE DEVIATIONS ANALYSIS FOR THE DETECTION OF 2D HIDDEN
GAUSS-MARKOV RANDOM FIELDS USING SENSOR NETWORKS

Youngchul SunigH. Vincent Poor and Heejung Yu

ABSTRACT (GMRFs) using noisy observations. In particular we consgin-
sorsij located on a 2D latticé. On denoting the (noisy) measure-
ments of Sensaij asY;; and adopting a Neyman-Pearson formu-
lation, we can model the detection problem via null and a#tve
hypotheses given by

The detection of hidden two-dimensional Gauss-Markov camflelds us-
ing sensor networks is considered. Under a conditionalregtessive
model, the error exponent for the Neyman-Pearson deteatsfisng a
fixed level constraint is obtained using the large deviatiprinciple. For

a symmetric first order autoregressive model, the error rpis given Ho : Yij = Wijij €T vs.  Ha:Yi; = X5+ Wij,i5 € Z, (1)
explicitly in terms of the SNR and an edge dependence faitld (cor- . . . o
relation). The behavior of the error exponent as a functibcoorelation where{W;;} represents independent and identically distributed
strength is seen to divide into two regions depending on &teevof the (i.i.d.) A(0,0%) noise with a known variance?, and { X;;} is
SNR. At high SNR, uncorrelated observations maximize ther exponent a stationary GMRF on the 2D lattice independent of the mea-
for a given SNR, whereas there is non-zero optimal cormeiait low SNR. surement nois¢ W, }. Thus, the observation samples form a 2D

Based on the error exponent, the energy efficiency (defin¢ldeastio of ;
the total information gathered to the total energy requiafcad hocsen- hidden GMRF undet{,.
sor network for detection is examined for two sensor deplkynmodels:
an infinite area model and and infinite density model. For alfs@nsor
density, the energy efficiency diminishes to zero at atarea '/2) as
the area is increased. On the other hand, non-zero efficispossible for
increasing density depending on the behavior of the phlysizeelation as
a function of the link length.

Index Terms- Neyman-Pearson detection, error exponent, GMRF
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1. INTRODUCTION Fig. 1. Sensors on a 2D LatticE Hidden Markov Structure
Consider the design of a sensor network for the detection of a
correlated stochastic signal in a fixed area. Many questdise 1.1. Summary of Results
in such a design: How do the field correlation and measurementrhe exact error probability of the detection of the NeymaaiBon
signal-to-noise (SNR) affect the detection performancefratis test is not available in closed-form in the general coreslatase,
the optimal sensor density, i.e., the number of nodes péauea? including the hypotheseEl(1). Hence, we invoke the the ldeyé

What is the information and energy trade-off in such a sensbr ~ ations principle and use theror exponenof the detection prob-
work with ad hocrouting? To address these issues, several studiesability (or, more conveniently, its complement, the misshabil-

e ; ol ity) as an alternative performance measure. For a fixed-&désen
basgd ?ndone dlmeas?nalrﬁ(]ll:z)) s?_iatlal 5|gnte;]l moplels haee be level, the miss probability’,; decays exponentially as the sample
conducted (see, e.gl.I[1] arid [2]). However, there is an itapo sizen increases, and the error exponent is defined as the rate of
difference between 1D signal models and actual spatiali8gn  exponential decay, i.e.,

Suppose that we take observations from sensors placedigquid 1
tantly along a line transect laid over a given area. The obsiens K2 lim —= log Py )
may then be viewed as samples generated by a one-dimensional ] ’Hoo "
process and the results from time series analysis couldtiiedp ~ under the given constraint (i.e., the false alarm probghif- <

to investigate their statistical properties. Howeverrétis no real ~ @)- The error exponent is a good performance criterion inahgsl
notion of ‘signal flow’ or dependence direction along thevgect ~ S@mple regime since it allows the designer to estimate theeu
as there is in a more traditionally obtained time series. Saon- of samples required for a given detection performance. Elenc
ples from sensors deployed over a two-dimensional (2D), drea efficient design can be examined through the error exporent f
is necessary to consider the signal dependence in all idineict large scale sensor networks. _

the plane, and as a consequence, answering the above gaestio ~ Here, we adopt theonditional autoregression (CAR) model
becomes more difficult. for the signal, and derive a closed-form expression for tinere

To address the above questions in a 2D setting, in this pa-exponent of the miss probability (which is independent®fin
per, we consider the detection of 2D Gauss-Markov randomisfiel  the spectral domain. We do so by exploiting the spectrattira
of the CAR signal and the relationship between the eigemgati
the block circulant approximation to a block Toeplitz matrdie-
scribing the 2D correlation structure. In particular, isi®own that
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correlation at low SNR. Interestingly, it is seen that thisra dis-
continuity in the optimal correlation strength as a functad SNR.
In the perfectly correlated case, the error exponent is asrex-
pected. For the error exponent as a function of SNR, we wathsh
that the error exponent increased@sSNR for a given correlation
strength at high SNR.

We consider two asymptotic regimes modelling the sensor de-
ployment in 2D: an infinite area model with a fixed density and a
infinite density model with a fixed area. Applying the resulie
obtain the asymptotic behavior of the energy efficiency mefias
the ratio of the total information gathered to the requiredrgy to
obtain information from the area for an ad hoc network withimi
mum hop routing to the fusion center. For the infinite areaehod
the energy efficiency decays to zero with rétgarea '/?) as we
increase the coverage area. For the infinite density modehe
other hand, a non-zero efficiency is possible if the decayatthe
error exponenfC(density) as a function of density is slower than
O(density'~%)/2), wheres is the propagation constafit> 2.

1.2. Related Work

The detection of Gauss-Markov processes in Gaussian rosse i
classical problem. Sekl[4] and references therein. Howawest
work in this area considers only 1D signals or time series. A
closed-form error exponent was obtained and its propen&re
investigated for 1D hidden Gauss-Markov random proce&3jes [
Large deviations analyses were used to examine the issugs of
timal sensor density and optimal sampling were examineH avit
1D signal model in[L] and]2].

An error exponent was obtained for the detection of 2D GM-
RFsin [5], where the sensors are located randomly and thkdvar
graph is based on the nearest neighbor dependency enabling
loop-free graph and further analysis. In this work, howgetee

measurement noise was not captured. Our work here focuses on

the error exponent for the detection of 2iRidenGMRF on a 2D
infinite lattice, which allows for the consideration of mes=ment
noise. In particular we examine the above CAR model and inves
tigate of the detection performance with respect (w.ra.yarious
design parameters such as correlation strength, measur&iNg,
sensor density and area.

2. DATA MODEL

Definition 1 (GMRF [5]) Arandom vectoX = (X1, Xo, -+, X»)
€ R" is a Gauss-Markov random field w.r.t. a labelled graph
G = (v, &) with meanu and precision matrixQ > 0, if its prob-
ability density function is given by

P = () " 21Q e (X - wTQX - ) @

andQm # 0 < {l,m} € Eforall l # m. Here,v is the set of
all nodes{1,2,--- ,n} and€ is the set of edges connecting pairs
of nodes, which represent the conditional dependencetsiric

Note that the mean and the precision matrix fully charazeeri
a GMRF. Note also that the covariance maifx ! is completely
dense in general while the precision maté)has nonzero ele-
mentsQ;.», only when there is an edge between nobasdm in
the Markov random field. Hence, when the graph is not fully-con
nected, the precision matrix is sparse. The 2D indexingreehe
(4,4) can be properly converted to an 1D scheme to apply Defini-
tion[. From here on, we use the 2D indexing scheme for conve-
nience.

Definition 2 (Stationarity) A 2D GMRF on 2D doubly infinite
lattice Z is said to be stationary if the mean vector is constant

and Cov(X,;, Xyryr) 2 B{Xy; Xy} = (i —i',j — 5') for
some functior(-, -).
For a 2D stationary GMRFX;; }, the covariancé~;; } is defined

as
Yij = B{ Xy Xir i jr i3} = B{Xo0 X5}, (4)

which does not depend ahor ;' due to the stationarity. Further,
the spectral density function of a zero-mean and statioGanys-
sian proces$ X;; } onZ., with covariancey;; is defined as
T O s exp(—iien + jua)),

1j€ELoo
where. = /=1 and (w1, w2) € (—, n]%. Note that this is a 2D
extension of the conventional 1D discrete-time Fouriemgfarm
(DTFT).
Definition 3 (The conditional autoregression (CAR)) A GMRF

can be specified using a set of full conditional normal digttions
with mean and precision:

J(wi,wa) = 5)

1

0oo

B{X:;[X—it = Oirjr Xitir jrg, (6)
i7§7 €T oo £00

= 6o >0,

Prec{Xij\X,ij}
whereX _;; denotes the set of all variables except;.

It is shown that the GMRF defined by the CAR modé! (6]} ( 7) is
a zero-mean stationary Gaussian procesgrwith the spectral
density function[[6]

@)

1 1
wi,wa) = —= - - 8
Flwr,w2) a2 37 iex. Oy exp(—t(iwr + jw2)) ®
if
a [{8ij # 0} < oo, 8ij =0_i—5, oo >0, )

{07} is so thatf (w1, w2) > 0, Y(wi,ws) € (—m, 7> (10)

We assume that the 2D stochastic signalin (1) is given by-a sta
tionary GMRF defined by the CAR modéll (6)d (7) afdl (9 =1(10).
Then, the observation spectrum under the two hypoth&semrél)
given, respectively, by

2 2
rel rel
3. PERFORMANCE MEASURE: ERROR EXPONENT

In this section, we investigate the performance of the Neyma
Pearson detector with level € (0,1) for a 2D CAR signal in
noisy observations. We obtain the error exponent in thetsgdec
domain for this problem by exploiting the spectral struetaf the
CAR signal and the relationship between the eigenvaluetockb
circulant and block Toeplitz matrices representing 2D &ation
structure.

Theorem 1 (Error Exponen& Consider Neyman-Pearson detec-
tion between the hypothes€$ (1) with the mddel (6) - (7) atid wi
levela € (0,1). Assuming that condition§](9 and]10) hold, the
error exponent of the miss probability is independentvand is

given by
1 /'fr /'fr L
— —lo
a2 J_ S\ 2 &
1 1

+ 202 4 Ar2f(wr, w2) 2

/'” /'” D(N(0, 52 (w1, w2))|IN(0, S¥ (w1, wa)) dwn des,

SY(wi,w2) = and SY (w1, ws2) = + fwi,w2).

o2 + 47% f (w1, wa)
52

K

0,2

) dwl dUJ2, (11)
1
472

whereD(-||-) denotes the Kullback-Leibler divergence.



Proof: K is given by the almost-sure limit of the asymptotic
Kullback-Leibler ratec = lim,,, o < log 2‘;7 (y) evaluated under
po,[[f]. Using the fact that we have Gaussian distributions unde
both hypotheses, we have

1 det(B1n) | 1 7 1 . )
10t 1 r o o ,
(2 o8 det(Zo,n) * 2y"( 1.n 0n)¥n

Then approximating the block Toeplitz correlation matrithaa
block circulant matrix and applying the the 2D Grenandezgfz
theorem, we obtain the limit of each term as follows.

1 1 ™ ™
—logdet(X1,,) — — / / log(o? + 47° f (w1, wa))dw: dws,
n 42 J_ )

1

Zlogdet(Zo.n) — logo’,

n
LTyt N /7r /7r o dwid
— n —_— e —— 2 109 wa,
pYn S nY ar? ) o) e raArtf(wr,wa)  E
1 1
— > n  — 1,
nyn 0,ny )

almost surelyl

This theorem is a 2D extension of the error exponent of 1D
hidden Gauss-Markov model based on state-space strudtre o
tained in[3]. Intuitively, the error exponeri{|11) can b@kined
using the frequency binning argument. For each 2D frequsegy

mentdw: dws, the spectra are flat, i.e., the signals are independent

Corollary 1 The error exponent for the Neyman-Pearson detector
for the hypotheseg](1) with the SFAR 2D signal model is giyven b
1 ™ ™ 1 SNR
an2 /777 /77\' (5 fog (1 t KGO —2¢ coswy — 2¢ Coswg))
1 1

1
+ = R - —)dwldwg. (15)
21+ (2/7)K(4¢)(1—2¢ cos wy —2( cos wy) 2

Ks

Note that the SNR and correlation are separatedih (15), hwhic
enables us to investigate the effects of each term separatel

3.2. Properties of the Error Exponent/Cs

First, it is readily seen from Corollafyl 1 thét, is a continuous
function of the edge dependence facto(0 < ¢ < 1/4) for a
given SNR. The values df, at the extreme correlations are given
by noting that/k'(0) = § and K(1) = oco. Therefore, in the
i.i.d. case (i.e.{ = 0), the corollary reduces to Stein’s lemma as

expected, andC; is given by

! L = DN(0,0%)[IN(0, 0>+ P.)).

1
Ko == log(1+SNR 4 —— —
5 eI +SNR+ o R 3

For the perfectly correlated casé & 1/4), on the other hand,
Ks = 0. In fact, in this case as well as in the i.i.d. case, the
two-dimensionality is irrelevant. The known result that, ~
@(n’1/2) for the perfectly correlated case is applicable.

For intermediate values of correlation, we evaluéid (15) fo

and Stein's lemma can be applied for the segment. The overallseveral different SNR values, as shown in [Elg. 2. It is seahah

Kullback-Leibler divergence is the sum of contributionsrfreach
bin.

3.1. Symmetric First Order Autoregression

To investigate the behavior of the error exponent as a fonaif
correlation and SNR, we further consider the symmetric dirder
autoregression (SFAR;\, described by the conditions

E{X;X_ij} = ;(Xi+1,j + Xi—1,j + Xij+1 + Xii-1),
Prequ”X,ij} k>0,
where0 < X < 4. (This is a sufficient condition to satisfly](9) -
m)) Note here thﬁoo = mand91,0 = 97170 = 9071 = 90,71 =
—\. In this model, the correlation is symmetric for each sebaf f
neighboring nodes. The SFAR model is a simple yet meaningful
extension of the 1D Gauss-Markov random process, whichhgas t
conditional causal dependency only on the previous sarkjgee
in the 2D case we have four neighboring nodes in the four §p)an
directions. The spectrum of the SFAR is given by

1
Flwr,wa) = 472K(1 — 2 coswy — 2¢ coswa) (12)
We define theedge dependence factoby
(22 o<c<ia (13)

Note that¢{ = 0 corresponds to the i.i.d. case wheréas- 1/4
corresponds to the perfectly correlated case. Hence, thelation
strength can be captured in this single quartifgr SFAR signals.
The power of the SFAR is obtained using the inverse Fousdistr
form via the relation[(), and is given by

2K(49) (0 <(< 1)
) - 74 )

TR
where K (+) is the complete elliptic integral of the first kind][8].
The SNR is given by SNR= 25 = 2509 " Using eq. [IL) and

TRo2

P, = Yoo = (14)

the SNR, we obtain the error exponent in the SFAR signal case,

denoted byC,; and given in the following corollary.
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Fig. 2. ICs as a function of: (a) SNR =10 dB, (b) SNR =0 dB,
(c) SNR=-3dB, (d) SNR=-5dB

high SNRIC, is monotonically decreasing @sincreases. Hence,
i.i.d. observations give the best error performance fovargialue
of SNR when SNR is large, as in the 1D c&se [3]. As we decrease
the SNR, it is observed that a second mode grows Qiearl /4.
As we further decrease the SNR, the valu€ of the second mode
shifts toward1/4, and the value of the second mode exceeds that
of the i.i.d. case. Hence, there is a discontinuity in thenoat
correlation as a function of SNR in the 2D case even if the maki
KCs itself is continuous. This is not the case in 1D.

With regard toCs as a function of SNR, it is straightforward
to see that it is continuous and increases at thdsateNR at high
SNR for a given value of.



4. AD HOC NETWORKING: INFORMATION-ENERGY
TRADE-OFF

The analytical results in the previous section can be apptien-
swer some fundamental questions in the design of sensoorietw
for detection applications. We consider a plaadihocsensor net-
work with minimum hop routing. To simplify the analysis, we-a
sume tha(2n + 1)? sensors are located on the gfidn : 1 : n)?
with spacingr,,, as shown in Fid.]1, and a fusion center is located
at the centef0,0). We assume that the measurem&pt is de-
livered to the fusion center using the minimum hop routingiockr
requires a hop count df| + |j].
4.1. Physical correlation model

The actual physical correlation in this model can be obthimg
solving a proper continuous index 2D stochastic diffeadraqua-
tion (SDE), e.g.,

(o) () e e =

whereu(z, y) is the process noise agds a parameter determin-
ing the correlation strength of the field. By solving a prop&rE,

Sincer,, is fixed, s and Ey;,.x do not change witm, and [1T)
follows. &

Theorem 3 (Infinite density model) For the infinite density model,
a non-zero efficiency is possible if the decay rate of ther@xpo-
nent/Cs as a function of density is slower than

19 (densiwl*“/ 2) . (19)

Proof: For the infinite density model, we have
=01, rd =6(n"’), density= O(n?).

From [I8), we have) = K, (r,)/n'~°. If Ks as a function of-,
decays slower than'~?, 7 does not diminish to zerdll

The non-zero efficiency in the asymptotic regime depends on
the decay rate of’; as a function of-,. Sinceks(() is given, this
depends on the functionsandg in Sectior 4.1l and the propaga-
tion loss factow.

5. CONCLUSIONS

the edge correlation factop is given, as a function of the edge
lengthr,,, by

We have considered the detection of 2D GMRFs from noisy ob-
servations. We have adopted the CAR model for the signal, and
have used a spectral domain approach to derive the error expo

p=f(ra).

Typically, f(-) is a positive and monotonically decreasing function
of r,. Further, we have a monotone mapping p — ¢ from the
edge correlation factgs to the edge dependence factgrwhich

nent for the Neyman-Pearson detector satisfying a fixed tere
straint. Under the symmetric first order autoregressiveehade
have obtained the error exponent explicitly in terms of tINRS

maps zero and one to zero and 1/4, respectively. Thus, we haveand the edge dependence factor. We have investigated therpro

¢ = g(f(rn)), and for given physical parameters (with a slight
abuse of notation),

Ks(SNR () = Ks(SNR g(f(rn)))
We will use the arguments SNR agdor /C properly if necessary.
4.2. Energy efficiency

Ks(SNR 71,).

ties of the error exponent as a function of SNR and correiatide
have seen that the behavior of the error exponent w.r.teladion
strength is divided into two regions depending on SNR. Athhig
SNR, i.i.d. (and, thus, uncorrelated) observations masénthe
error exponent for a given SNR, whereas there is non-zerie opt
mal value of correlation at low SNR. Further, it has been gban
there is a discontinuity for the optimal correlation as action of

We now consider the energy efficiency of the ad hoc sensor net-SNR. Based on the error exponent, we have also investighéed t

work as the network size grows. The energy efficienayan be

defined as . .
__ total gathered informatios,

total required energy.,
where I is given by the product of the number of sensors and
the informationCs per each sensor. We consider two asymptotic
regimes for the increase in network size: an infinite areaehod
with fixed density and an infinite density model with fixed area
The behavior of the energy efficiency as we increase the mktwo
size is summarized in the following theorems.

Theorem 2 (Infinite area model) For an ad hoc sensor network
with increasing area and a fixed node density, the energyeaftiy
decays to zero as we increase the area with rate

; (16)

n=0 (area*m) . (17)
Proof: The total energy required for data gathering is given by

n n

By = Epink(ra) > (lil+15]) = 2n(n+1)(2n+1) Eiink (rn),
i=—mj=—n
where the transmission energy per liBk,. () = r, andd is
the propagation loss factor. We halie= (2n + 1)*Ks(r»), and
area= ©(n?). The energy efficiency is given by
@2n+ 1)2Ks(rn)
2n(n +1)(2n + 1) Biink (rn)

n= (18)

energy efficiency oaid hocsensor network for detection applica-
tions. For a fixed node density, the energy efficiency decaysro
with rateO(area '/?) as we increase the area. On the other hand,
non-zero efficiency is possible with increasing densityemhejing

on physical correlation strength as a function of the limglé.
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