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ABSTRACT

Local intrinsic dimension estimation has been shown to be

useful for many tasks such as image segmentation, anomaly

detection, and de-biasing global dimension estimates. Of par-

ticular concern with local dimension estimation algorithms is

the high variance for high dimensions, leading to points which

lie on the same manifold estimating at different dimensions.

We propose adding adaptive ‘neighborhood smoothing’ – fil-

tering over the generated dimension estimates to obtain the

most probable estimate for each sample – as a method to re-

duce variance and increase algorithm accuracy. We present

a method for defining neighborhoods using a geodesic dis-

tance, which constricts each neighborhood to the manifold of

concern, and prevents smoothing over intersecting manifolds

of differing dimension. Finally, we illustrate the benefits of

neighborhood smoothing on synthetic data sets as well as to-

wards diagnosing anomalies in router networks.

Index Terms— Intrinsic dimension, manifold learning,

Riemannian manifold, nearest neighbor graph, geodesics

1. INTRODUCTION

The field of manifold learning has led to many methods which

allow for significant reduction of high dimensional data sets

with minor or no loss of information. To perform this di-

mension reduction, one first needs to know the intrinsic di-
mensionality of the manifold supporting the data. In many

problems of practical interest data will exhibit varying dimen-

sionality, as multiple distinct and possibly intersecting mani-

folds may be represented in a single data set. In [1] we pre-

sented a method for adapting global dimension estimation al-

gorithms [2–5] to work in the local sense, obtaining a dimen-

sion estimate in the neighborhood of each point within a data

set rather than a single estimate for the entire set. We showed

that local dimension estimation can be used in problems of

practical interest, such as anomaly detection, image segmen-

tation, and for de-biasing global dimension estimation.
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In this paper we present a variance reduction method for

local dimension estimation. Under the assumption that points

which are close in Euclidean distance tend to lie on the same

manifold, we are able to filter algorithm results to obtain a

new dimension estimate for each sample which is equal to

the most represented dimension estimate in a local region

about that point. We refer to this process as ‘neighborhood

smoothing,’ as the filter tends to smooth out the highly vari-

able estimates between close samples. We define these local

neighborhoods by adapting each neighborhood to the shape

of the manifold near the concerned sample point. This con-

stricts each region to consider only points on the same man-

ifold as the sample of interest, and ignore points from dis-

joint manifolds which may lie close in Euclidean space. We

illustrate neighborhood smoothing with local dimension esti-

mation on both synthetic data sets and real data concerning

network anomaly detection.

This paper proceeds as follows: In Section 2 we give a

review of the k-NN dimension estimation algorithm, which is

the algorithm we utilize for illustration in this study. Section

3 presents the main contribution of this paper, adaptive neigh-

borhood smoothing as post-processing to local dimension es-

timation. Experimental results and comparisons are presented

in Section 4. Finally, Section 5 presents the conclusions and

some possible directions for future improvements.

2. THE K-NEAREST NEIGHBOR ALGORITHM FOR
DIMENSION ESTIMATION

Let Yn = {Y 1, . . . ,Y n} be n independent and identically

distributed (i.i.d.) random vectors with values in a compact

subset of R
d. The (1-)nearest neighbor of Y i in Yn is given

by

arg min
Y ∈Yn\{Y i}

|Y − Y i|,

where |Y − Y i| is the usual Euclidean (L2) distance in R
d

between vector Y and Y i. For a general integer k ≥ 1, the

k-nearest neighbor of a point is defined in a similar way. The

k-NN graph assigns an edge between each point in Yn and
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(a) Spherical Neighborhood
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(b) Adaptive Neighborhood

Fig. 1. Neighborhoods (�) of the sample in question (�) defined by a) Euclidean distance and b) geodesic distance.

its k-nearest neighbors. Let Nk,i = Nk,i(Yn) be the set of

k-nearest neighbors of Y i in Yn. The total edge length of the

k-NN graph is defined as:

Lγ,k(Yn) =
n∑

i=1

∑

Y ∈Nk,i

|Y − Y i|γ , (1)

where γ > 0 is a power weighting constant.

For many data sets of interest, the random vectors Yn are

constrained to lie on an m-dimensional Riemannian subman-

ifold M of R
d (m < d). Under this framework with a large n

approximation, the asymptotic behavior of (1) is given by [4]

as

Lγ,k(Yn) = nαc + εn (2)

where α = (m − γ)/m and c is a constant with respect to α
that depends on the Rènyi entropy of the distribution of the

sample on the manifold.

The intrinsic dimension estimate m̂ can be found using

non-linear least squares (NLS) by calculating graph lengths

over varying values of n. We solve NLS for m̂ by minimizing

over both c and integer values of m ∈ Z. This leads to an

estimator

m̂ = arg min
m∈Z

{min
c

∑

n

(Ln − nα(m)c)2}. (3)

Graph lengths Ln = Lγ,k(Yn) for differing sample sizes

on the manifold are calculated using a block bootstrapping

method, details of which can be found in [1].

2.1. Local Dimension Estimation

The k-NN algorithm in itself is a global dimension estimator,

i.e. it globally fits the k-NN graph length functional Ln and

solves (3) over the entire sample space. It is transformable

as a local dimension estimator by running the algorithm over

a smaller neighborhood about each sample point. Intuitively,

if an m-dimensional manifold M supports a uniform distri-

bution at the n points, Yn = {Y 1 . . . Y n}, then any small

sphere or data cluster C ⊆ M, centered at point Y i will also

support a uniform distribution over n′ ≤ n data points. As

such, the global dimension estimation algorithm can be used

on a local subset of the data to estimate the local intrinsic di-

mension of each sample point.

3. NEIGHBORHOOD SMOOTHING

In previous work, dimension estimates were solved as de-

scribed above without any variance reduction, which led to

results with a high variability due to the random subsam-

pling. To increase the accuracy of the algorithm, we have

added neighborhood smoothing as a post-processing of the

results of the k-NN dimension estimator. The initial intuition

when developing the algorithm was that samples that were

“close” tend to lie on the same manifold, and therefore have

the same dimension. With that assumption still in place, it

follows that filtering by majority vote over the dimension es-

timates of nearby samples should smooth the estimator and

reduce variance. This voting strategy is similar to the methods

of bagging [6] and learning by rule ensembles [7]. Smoothing

simply looks at the distribution of dimension estimates within

each sample point’s local neighborhood, and re-assigns each

sample a dimension estimate equal to that with the highest

probability within its neighborhood. Specifically,

m̂ = arg max
j

PNi [m̂ = j] , (4)

where PNi is the probability over the neighborhood of the

current sample Ni.

The key factor to smoothing is defining the neighborhood,

Ni. If Ni is too large, oversmoothing will occur. The variance

of the dimension estimates will drastically decrease, but there

will be a strong bias which will remove detected anomalies

and smaller manifolds. As such, one cannot use a constant,
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Fig. 2. Neighborhood smoothing applied to 7-dimensional data containing two spheres with intrinsic dimensions 2 and 5

spherical region about a point, but must adapt that region to

the statistics of the sample.

3.1. Non-Spherical Neighborhoods

Rather than defining neighborhoods through Euclidean dis-

tance, which will form only spherical regions about each sam-

ple point, we will define neighborhoods using a geodesic dis-

tance metric. This will adapt the neighborhood to the geom-

etry of the manifold. The geodesic distance between 2 un-

connected points in a graph is defined as the shortest path

connecting said points. For our purposes, this metric can be

determined by taking each point, and creating an edge to the

k-NN of each point. Then using Dijkstra’s shortest path al-

gorithm (or any other algorithm for computing the shortest

path), find the geodesic distances to each pair of points in the

graph. Any points that remain unconnected are considered to

have an infinite geodesic distance.

To define a local neighborhood, we can now simply choose

the closest ngeo points for which the geodesic distance is not

infinite. This forms a non-spherical neighborhood that adapts

to the curvature of the manifold, performing much better than

spherical neighborhoods. Figure 1 illustrates the difference in

the neighborhoods (black stars) that are formed on the ‘swiss

roll’ manifold when using different proximity metrics. The

Euclidean distance (Fig. 1(a)) forms a spherical neighborhood,

including points that are separated from the sample in ques-

tion (red diamond). The geodesic distance (Fig. 1(a)), how-

ever, forms a neighborhood considering points only in close

proximity along the actual manifold. This prevents smooth-

ing across distinct manifolds which may lie closely together

in Euclidean space.

4. SIMULATION RESULTS

One immediate benefit is that neighborhood smoothing al-

lows us to decrease run time by almost two orders of mag-

nitude. This is a result of the ability to use nominal settings

in the estimation algorithm (i.e. less averaging and bootstrap-

ping) which significantly reduces computational complexity.

4.1. Two Spheres

Illustrating the effects of the adaptive neighborhood smooth-

ing, we create a 7-dimensional data set that includes 2 distinct

spheres of intrinsic dimensions 2 and 5, each containing 300

uniformly sampled points. The spheres intersect in three com-

mon dimensions. Fig. 2(a) shows the histogram of the local

dimension estimates of each sample before any neighborhood

smoothing was applied, while Fig. 2(b) shows the results after

the smoothing. One can clearly see that the wide histogram

was correctly condensed to the proper local dimension esti-

mates, even though the manifolds intersect.

4.2. Abilene Network Data

Anomalies can be detected in router networks through the use

of local dimension estimation [1]. Specifically, when only a

few of the routers contribute disproportionably large amounts

of traffic, the intrinsic dimension of the entire network de-

creases. Using neighborhood smoothing as a form of post-

processing, we are better able to locate the traffic anomalies,

as the variance of the estimates is reduced. Fig. 3 illustrates

the usage of neighborhood smoothing on the results of local

dimension estimation for anomaly detection. The data used

is the number of packets counted on each of the 11 routers

on the Abilene network, on January 1-2, 2005. Each sam-

ple is taken every 5 minutes, leading to 576 samples with an

extrinsic dimension of d = 11.

Figure 3(b) illustrates that neighborhood smoothing is able

to preserve both the visually obvious (n = 148, n > 300) and

non-obvious (n = 87 − 120) changes in network complex-

ity. A detailed investigation of time n = 244, for example,

reveals that the Sunnyvale router (SNVA) showed increased

contribution from a single IP address, and multiple routers

showed increased activity on a single port. This change in di-
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Fig. 3. Neighborhood smoothing applied to Abilene Network traffic data dimension estimation results.

mensionality indicating anomalous activity would generally

go unnoticed with the raw results of local dimension estima-

tion due to the high variance (Fig. 3(a)).

We note the results shown in Fig. 3 are performed us-

ing nominal algorithm settings which allows the algorithm

to run quickly and accurately with neighborhood smoothing.

We are able to generate results with much less variance than

Fig. 3(a) by applying more averaging and bootstrapping, but

this increases computation time by over an order of magni-

tude, while still producing results with much more variance

than Fig. 3(b).

5. CONCLUSIONS

We have presented a form of post-processing for local intrin-

sic dimension estimation that reduces the variability of algo-

rithm results. By maintaining the original assumption that

points that are close in Euclidean space tend to lie on the

same manifold, we are able to perform local neighborhood

smoothing by assigning each sample point a dimension esti-

mate which is most probable in its local neighborhood. By

utilizing the geodesic distance rather than the Euclidean dis-

tance, the constructed neighborhoods adaptively mold to the

shape of the manifold. This prevents smoothing over disjoint

manifolds which may lie close in Euclidean space. The use

of neighborhood smoothing as post-processing enables the k-

NN dimension estimation algorithm to run with over an order

of magnitude less complexity, due to the necessity for only

nominal averaging and bootstrapping.

We have shown that smoothing can significantly improve

the ability to use local intrinsic dimension estimation as a

means for anomaly detection in router networks. By reduc-

ing the variance of the results, anomalies clearly stand out.

We note that while we utilize the k-NN dimension estimation

algorithm for this study, neighborhood smoothing may be uti-

lized with any method of local dimension estimation. Future

work includes using neighborhood smoothing for other learn-

ing tasks (e.g. classification) and studying the effects smooth-

ing has on de-biasing for global dimension estimation.
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