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ABSTRACT

This paper focuses on confidence scores for use in acoustic model
adaptation. Frame-based confidence estimates are used in linear
transform (CMLLR and MLLR) and MAP adaptation. We show
that adaptation approaches with a limited number of free parame-
ters such as linear transform-based approaches are robust in the face
of frame labeling errors whereas adaptation approaches with a large
number of free parameters such as MAP are sensitive to the quality
of the supervision and hence benefit most from use of confidences.
Different approaches for using confidence information in adaptation
are investigated. This analysis shows that a thresholding approach
is effective in that it improves the frame labeling accuracy with little
detrimental effect on frame recall. Experimental results show an ab-
solute WER reduction of 2.1% over a CMLLR adapted system on a
video transcription task.

Index Terms— acoustic model adaptation, confidence scores

1. INTRODUCTION

Acoustic model adaptation is a common component of state-of-the-
art large vocabulary continuous speech recognition (LVCSR) sys-
tems. Popular methods are linear transform based adaptation algo-
rithms such as maximum likelihood linear regression (MLLR) and
constrained MLLR (CMLLR) [1, 2, 3] and state-dependent param-
eter adaptation such as maximum a posteriori (MAP) [4]. These
adaptation methods estimate the model parameters so as to maxi-
mize the state emission likelihoods for the observed acoustic feature
vectors. The state-sequence conditioning can be supervised in the
case of supervised adaptation or when the adaptation algorithm is
used in training to normalize for speaker variability orthogonal to
the speech content. For unsupervised adaptation, at test time, the
conditioning state sequence is derived from a prior recognition pass.
Although the prior transcript in that case contains errors, adapting
on that transcript disregarding that fact generally still results in ac-
curacy improvements. Since the number of free parameters of the
adaptation model are limited (e.g. in case of a linear transform, the
matrix and offset parameters alone), the estimate has some robust-
ness towards transcription errors. However, when the number of free
parameters increase for example by using many regression classes in
linear transform-based adaptation or by using MAP adaptation, the
errors will limit the potential gain of adaptation.

Another approach to using the erroneous transcriptions in unsu-
pervised adaptation is to include confidence scores and use these to
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filter or weight the data for adaptation parameter estimation. A lot
of prior work has investigated the use of confidence based adaptation
[5, 6, 7, 8, 9, 10, 11] and have shown that this approach can improve
the recognition performance.

Here we investigate confidence based unsupervised acoustic
model adaptation methods and analyze different uses of the confi-
dence estimates and their relationship to the number of free adap-
tation parameters. In particular, we present the application of state
posterior confidences for use in CMLLR, MLLR and MAP adap-
tation on a LVCSR task. In terms of confidence use, we compare
confidence based selection and data weighting on frame-level.

Section 2 gives an overview of the recognition task and a de-
tailed description of the recognition system. Section 3 describes
the experimental results. First a performance bound is established
through an oracle experiment simulating perfect state confidence
scores. We then describe and analyze automatically derived confi-
dences based on state posterior probabilities and uses these proba-
bilities in different adaptation approaches. Performance is analyzed
on a development set and the best performing setup is chosen for the
final experiment on the evaluation set.

2. TASK AND SYSTEM DESCRIPTION

Internet multimedia content like pod-casts or videos is growing and
therefore the demand for efficient search services for these. Auto-
matic annotation can be used in addition to available meta data to
build a search index. Automatic transcription system can be used to
annotate speech content with text to allow content-based search of
the spoken material.

The development of an automatic transcription system for such
a task is difficult, even if we focus on a subset of the multimedia
content. Narrowing the domain to video data of English speeches,
the subset still consists of many different sub-domains like news,
talk shows, lectures, etc. This means it is not possible to optimize

Table 1. Statistics for training and test corpora
data-set

train dev eval
audio [h] 182.8 4.3 4.0
# running words 1,713,660 41,701 40,085
# segments man. 110,324 2,674 2,441
# segments auto. – 4,706 4,742
# adapt. clusters 873 304 281
LM perplexity – 155.6 170.0
OOV [%] – 1.4 0.9



Table 2. Proportion of running words per sub-domain ([%])
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train 17.1 6.5 20.6 2.8 0.2 0.4 52.4
dev 49.3 19.7 19.4 11.2 – 0.4 –
eval 25.9 19.9 15.8 21.5 15.2 1.7 –

the automatic transcription system with a very specific lexicon, lan-
guage model and acoustic model. Making the domain more spe-
cific would dramatically increase the data collection requirements
and pose a large effort in system design. This work investigates the
performance of a single transcription system and focus on acoustic
model adaptation methods.

Table 1 and Table 2 give an overview of the speech corpora
used for training, development and evaluation of the LVCSR
system. Videos available at Google video search were selected,
transcoded and resampled to 16 kHz mono audio data. The audio
data was transcribed and divided into training, development and
evaluation sets. Each set consists of audio tracks corresponding
to whole video shows. Table 2 lists the proportion of the selected
video sub-domains, e.g. Charlie Rose (CRS), Tech Talks (TTALK),
Authors@Google (AUTHORS).

System Description:
• Speaker and domain independent acoustic model
• 39 dimensional acoustic vectors after applying LDA and

semi-tied covariance transform on 9 time consecutive stacked
13 dimensional PLP features

• 3-state left-to-right HMM topology
• 41 phonemes + 4 noise models + silence state
• 8698 decision tree tied cross-word triphone states
• 16 component Gaussian mixture models with diagonal co-

variances
• Maximum likelihood training using Viterbi approximation
• 81k recognition vocabulary
• 4-gram language model with 9 million n-grams

Table 3 gives an overview of the performance of the baseline
system applying commonly used adaptation methods. Prior to adap-
tation, the audio material was segmented and clustered into speaker
clusters of about 30 seconds of speech per cluster using an algorithm
very similar to the one described in [12]. We observe a gain of more
than 10% relative from the speaker adaptive trained CMLLR (SAT-
CMLLR) model over the speaker independent (SI) model. The use
of MLLR on top of the CMLLR pass provides a small additional
gain. For SAT-CMLLR and MLLR we are using a single transfor-
mation matrix and single bias vector.

The refinement of the SAT-CMLLR model with MAP adaptation
leads to no performance improvements. Our conjecture is that even
though MAP has many more free parameters and hence should have

Table 3. Baseline recognition results (WER [%])
dev eval

1st pass: SI 40.6 45.8
2nd pass: SAT-CMLLR 36.3 38.5
3rd pass: MAP 36.3 38.5
3rd pass: MLLR 35.8 37.7

Table 4. Oracle adaptation results on dev. corpus (WER [%])
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unsupervised baseline 36.3 35.8 36.3
perfect confidence 35.2 33.9 31.5
used frames [%] 60 64 64

the potential to further improve performance of the adapted system,
the transcription errors prevent that gain from materializing.

3. APPLYING CONFIDENCE SCORES IN ADAPTATION

The most common way for unsupervised adaptation is the use of
the automatic transcription of a previous recognition pass without
the application of confidence scores. However, many publications
have shown that the application of confidence scores for adaptation
can improve recognition results. Small improvements for confidence
based CMLLR adaptation is reported in [5]. In [8] the authors have
investigated lattice-based MLLR applying a confidence threshold
and report 2% relative improvement in word error rate (WER) over
the 1-best transcription. In [7] 5% relative improvement is reported
for MLLR adaptation by performing word confidence selection from
the 1-best transcription.

3.1. Oracle experiments

In Table 4 we present an oracle experiment using SAT-CMLLR,
MLLR and MAP adaptation. Here the perfect confidence experi-
ments is taken at the frame-level. When aligning the reference and
hypothesis state sequences against the observation sequence, we se-
lect a subset of the frames for which the state labels match and dis-
card the frames for which the state alignments differ.

The results in Table 4 show performance bounds of using such
an adaptation approach with this “perfect state confidence” and
should be contrasted to the results in Table 3. Note however that the
adaptation performance is not only dependent on the observations
it is estimated on but also depends on the number of free parame-
ters. For example, we could increase the MLLR regression classes
which would lead to better oracle results. More important, these
results show us the negative effect transcription errors have for the
estimation of adaptation parameters. Especially the estimation of the
many MAP adaptation parameters is prone to errors. Whereas SAT-
CMLLR and MLLR are much more error robust due to the fewer
parameters and the linear transformation constrains. On the other
hand, due to the high number of free parameters MAP outperforms
the MLLR method in our oracle experiments.

These results suggest the application of confidence scores for
acoustic model adaptation and indicate the higher potential of MAP
within our parameter setup for the adaptation methods.

3.2. State Posterior Confidence scores

In automatic speech recognition confidence scores can be developed
and optimized for different units like utterances, words, phonemes
or states. The optimization at the utterance level is a focus for dialog
systems where a confidence based utterance rejection is applied. For
unsupervised training or acoustic model adaptation it makes sense
to focus on the tied state label since distributions are associated with
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Fig. 1. State data histogram for lattice-weight confidence variant.

these units. Instead of rejecting an entire utterance or word the sys-
tem can use state confidence scores to select state-dependent data.

State confidence scores are obtained from computing arc poste-
riors from the lattice output from the decoder. The arc posterior is
the fraction of the probability mass of the paths that contain the arc
from the mass that is represented by all paths in the lattice. The pos-
terior probabilities can be computed efficiently using the forward-
backward algorithm as, for example, described in [13, 14].

3.3. Application of confidence score

Confidence scores can be used for observation selection through
thresholding or observation weighting. We describe three different
application variants of confidence scores which are commonly found
in the literature for confidence based accumulation of observation
statistics.

lattice-weight: Fractionally assign all observations to all states
based on their posterior probabilities.

1-best-weight: Fractionally assign all observations to the states seen
in the 1-best recognition hypothesis. In other words, intersect the
lattice mentioned in the previous approach with the 1-best state se-
quence and assign observations based on that intersection.

1-best: Find the subset of observations for which the frame confi-
dences exceed a threshold in the 1-best recognition hypothesis. If
the confidence threshold is set to 0, this corresponds to the baseline
method of unsupervised adaptation without confidences.

3.4. Evaluating state confidence scores

Given that the adaptation algorithms update state-tied distributions,
our focus is on frame-level confidence measures and we aim to eval-
uate the confidence measures using the state as a unit. It is difficult to
interpret the influence of word errors for the aligned state sequence
or to state which of the deletion, insertion or substitution errors are
the most harmful ones. Out-of-vocabulary words are also meant to
be harmful for adaptation [7, 11] but even when a word is wrong, the
pronunciation or most of the pronunciation can still be correct. An
analysis of frame-level assignments will incorporate these consider-
ations and give a more direct view of the effect errors will have on
the adaptation sample.

We use the same acoustic model to compute the reference state
alignment as we have used to generate the hypothesized state align-
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Fig. 2. State data histogram for 1-best-weight confidence variant.

ment from the automatic transcripts. In the case the phonetic tran-
scriptions or the tied state sequence match we count no errors. How-
ever, if one state is mis-labeled it is not counted as a single error but
as the sum of the wrongly assigned frames for that state.

In the cases of using fractional frame assignments, errors are
counted fractionally as well for the evaluation statistics. The
weighted error per frame is equal to its posterior probability in the
interval [0, 1].

3.5. Analysis experiments

For each adaptation method we applied the three different confidence
variants and multiple thresholds on the development corpus.

To estimate the effectiveness of the different confidence variants
for adaptation, we depict the histograms of the lattice-weight confi-
dence variant and the 1-best-weight variant in Figure 1 and Figure 2
respectively. These histograms visualize the weighted sum of correct
and falsely labeled frames based on state labels, distributed over 20
confidence bins. It can be observed that the weighted sum of mis-
labeled states is much higher for the lattice-weight confidence vari-
ant than for the 1-best-weight variant. This shows that, due to the
quality of the confidence metric, thresholding the confidence scores
results in improved accuracy with little loss in recall. As a result,
adaptation approaches that have a large number of free parameters
and hence will be sensitive to frame state-label errors are expected
to benefit from confidence thresholding. Figure 3 shows the recogni-
tion performance for CMLLR, MLLR and MAP. For each adaptation
approach, 3 curves show the performance when using the lattice-
weight, 1-best-weight or 1-best approaches to incorporating confi-
dence scores. The different points on the curves correspond to using
different thresholds for selecting the adaptation data sample.

As expected, the limited number of free parameters in the lin-
ear transform-based adaptation schemes makes them fairly robust
against mis-labeled frames as evident by the little effect on WER
by changing the confidence threshold. However, MAP which has
a much larger number of free parameters exhibits much better per-
formance when only high confidence frames are used in the adapta-
tion sample. It appears using a confidence threshold of 0.7 and the
1-best-weight approach results in the best performance.

3.6. Evaluation set experiments

In Table 5 we present the results of the confidence based MAP
adaptation on top of the SAT-CMLLR model on the evaluation set.
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Fig. 3. Recognition performance for confidence based adaptation.

Here we have used the 1-best-weight state confidence variant with
a threshold of 0.7 which was found to give good results on the de-
velopment test set. It shows consistent improvements over use of
CMLLR adaptation alone for the overall test set as well as for each
sub-domain. Note that no gain was observed when using MAP with-
out confidences showing the importance of using confidences.

4. CONCLUSION

The experimental results in this paper support the conjecture that lin-
ear transform-based adaptation approaches, limited in the number of
free adaptation parameters, are somewhat robust to frame labeling
errors as is the case in unsupervised adaptation on a partially accu-
rate previous pass transcript. The experimental results also show that
MAP adaptation implemented in such a condition results in little or
no gain since the many free adaptation parameters will reinforce the
errors present in the transcripts used for supervision.

The work shows, consistent with previous findings, that the use
of confidence scores in adaptation leads to improved performance,
in particular for adaptation approaches that have a large number of
free parameters. Use of confidences in MAP adaptation shows a
2.1% absolute WER reduction over use of CMLLR alone whereas
the use of MAP without confidences shows no gain. In addition, use
of confidences in an adaptation approach that uses few free adapta-
tion parameters like CMLLR or MLLR show little additional gain.
It is to be expected that using linear transform-based adaptation ap-
proaches with multiple regression classes (effectively increasing the
number of free adaptation parameters) will see a similar benefit from
using confidence. Further analysis of the confidence scores shows
that thresholding is an effective strategy for improving the frame la-
beling accuracy with little detrimental effect on the frame recall and
hence has a beneficial effect on adaptation.

Table 5. Recognition results on test corpora (WER [%])
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dev 2nd pass 36.3 25.4 37.4 38.5 77.4 – 21.2
+ MAP 34.5 24.5 35.2 36.7 72.1 – 20.7

eval 2nd pass 38.5 41.2 28.1 28.1 66.6 21.5 17.5
+ MAP 36.4 39.9 26.0 26.4 63.8 18.6 17.5

The use of adaptation algorithms for the fairly wide domain of
English speech video data appears effective as it results in a 9.4%
absolute WER reduction over an unadapted system on the evaluation
set (45.8% vs. 36.4%).
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