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ABSTRACT

In this paper, we investigate acoustic features which differentiate the
two speech registers neutral and intimate within different constella-
tions of speakers and addressees. Three different types of speak-
ers are considered: mothers addressing their own children or an
unknown adult, women with no children addressing an imaginary
child or an imaginary adult, and children addressing a pet robot us-
ing both intimate and neutral speech. We use a large, systemati-
cally generated feature vector, upsampling, and SVM and RF for
learning. Results are reported for extensive test-runs facing speaker-
independency and using PCA-SFFS vs. SVM-SFFS for feature rank-
ing. Classification performance and most relevant feature types are
discussed in detail.

Index Terms— Affective Speech, Intimacy, Emotion, Feature
Selection.

1. INTRODUCTION

Para-linguistic variability within speech quite often serves the func-
tion of signalling membership, be this belonging to a certain regional
group (dialects) or a certain social class (sociolects).Throughout,
the speech register people use can be part of formal (symmetric
or non-symmetric transactional) or intimate interaction, for instance
between members of the same family. We want to address ‘neutral’
speech — i.e. speech that does not convey emotions and is not trig-
gered by a certain bond with the interlocutor — and speech estab-
lishing a certain relationship between speakers and addressees; the
register we are dealing with we want to call the register of intimacy
which is, for example, typically produced when parents address their
own children. Intimate adult-adult interaction between lovers can
display similar characteristics.

Depending on the different personnel and their different tasks
recorded for our databases, we speak about Child-Directed Speech
(CDS) if adults address children, of Adult-Directed Speech (ADS) if
adults address adults, and of Pet-Directed Speech (PDS) when refer-
ring to children addressing a pet robot (as in [1, 2]).

CDS denotes the speech register that speakers and in particular
parents use to address a child of language acquisition age; it is char-
acterised by raised pitch, wider pitch range, exaggerated prosody,
hyper-articulation, slower speech rate, and reduced linguistic com-
plexity, and is assumed to constitute an adaptation that permits moth-
ers to control the child’s arousal, and to elicit the child’s attention
[3]. Importantly, CDS is widely reported to be a speech style that is
expressing emotions as well as being triggered by emotions. It has
been suggested [4] that the prosodic characteristics of CDS resemble
those associated with the vocal expression of positive affect, namely

higher pitch, wider pitch range, as well as higher acoustic energy,
with only speech rate being described as slower in CDS compared
to speech expressing positive affect [5]. This observation is in line
with views that communication with young infants is predominantly
affective in nature. There is growing evidence that affective commu-
nication is crucial in early child development [6].

Less is known about CDS features of non-kin interlocutors who
may not have an affective bond with the child. [7] found that pitch
and pitch range increased when speaking to an imaginary child sug-
gesting that CDS of non-kin interlocutors is similar to parental CDS.
Pitch and pitch range increased even more when the adults were
speaking to a real child. Features of CDS seem to be in fact also
present in other speech registers, in order to signal a certain amount
of intimacy or affect. PDS as well as so-called lovers’ speech are
such examples. In line with this, we could show in [1] that children
addressing a pet robot dog utilise prosodic features similar to those
found in CDS when expressing positive affect towards the toy. This
analysis was based on an extensive set of acoustic parameters; com-
parisons with maternal CDS were made based on comparisons with
findings from the relevant CDS literature.

In the present paper, we want to compare three different speaker
groups in two different settings, namely in the ‘neutral’ register and
the ‘intimate’ register: mothers (M) addressing their own child or
another adult, ‘non-mothers’, i.e. adult (A) females without own
children, addressing imaginary children or imaginary adults, and
children (C) addressing a pet robot using either the neutral or the
PDS-like register. As a common terminology for the three different
constellations, we resort to ‘neutral’ vs. ‘intimate’ as two different
speech registers.

2. MATERIAL AND ANNOTATION

2.1. MATERNAL CHILD DIRECTED SPEECH

A referential communication task, based on the study design intro-
duced in [8], was set up with two conditions that were run as sepa-
rate trials: CDS and ADS. The speaker’s task comprised of giving
instructions to a listener whose task it would be to manipulate soft
toys laid out on an array according to the instructions. The set up of
arrays and soft toys was counterbalanced across speakers. In each
condition, speakers used eight pre-defined instruction sentences of
the type ”Touch the frog with the spoon”. The sentences were pre-
sented in a booklet and were the same for both conditions, but were
counterbalanced across speakers depending on the array of soft toys
assigned to the speaker. For mothers the addressee was their own
child (CDS) and an unknown adult (ADS), respectively. The record-
ings were carried out in a sound-treated room at the Department of
Psychology, University of Stirling. 24 English mothers, mean age 35
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years (ranging from 23 to 46) and their infants (N=24), aged between
2;0 and 3;8, took part.

They were told that they were taking part in a pilot study aimed
at exploring how children follow instructions and from which age
they are able to do so. For each trial one experimenter was present
who oversaw the recordings and instructed the participants as well
as one confederate who acted as the adult addressee. Both the ex-
perimenter and the confederate were unknown to the mothers. The
order of addressee was counterbalanced. Half of the mothers first ad-
dressed their child and then the adult confederate, the other half first
addressed the adult confederate and then their child. When moth-
ers addressed the adult, the child was taken to an adjacent room, so
as to keep the child out of sight and to avoid dual-tasking or even
child-directed speech.

2.2. IMAGINARY CHILD DIRECTED SPEECH

A referential communication task identical to the task for the MA-
TERNAL CDS database was administered to women with no chil-
dren of their own. For these non-mothers the addressee was an imag-
inary child (CDS) and an imaginary adult (ADS), respectively. The
recordings were again carried out in a sound-treated room at the De-
partment of Psychology, University of Stirling. 24 women, mean
age 27 years (ranging from 21 to 42 years), all native speakers of
English, were assigned as non-mothers. Non-mothers were told that
they were recorded giving instructions that would later be used for
another study to test a ‘game’ in which listeners would have to fol-
low instructions. They were shown the arrays and told how the game
works. The order of imaginary addressee (adult vs. child) was coun-
terbalanced. Participants were only told about the second type of
imaginary addressee after they had finished the recordings for the
first type of imaginary addressee. This had proven to be less confus-
ing for speakers in pilot runs. When asked to address an imaginary
adult, participants were instructed to imagine speaking to a friend
or acquaintance. When asked to address an imaginary child, partici-
pants were instructed to imagine speaking to a two- to three-year old
they might know or have seen in the department’s toddler group.

2.3. CHILDREN’S PET DIRECTED SPEECH

The database used is a German corpus with recordings of children
communicating with Sony’s Aibo pet robot [1, 2, 9]. The children
were led to believe that the Aibo is responding to their commands but
it was actually being controlled by a human operator who caused the
Aibo to perform a fixed, predetermined sequence of actions; some-
times the Aibo behaved disobediently, by that provoking emotional
reactions. The data was collected at two different schools from 51
children (age 10 - 13 years; 21 male, 30 female; about 9.2 h of speech
without larger pauses). Five labellers (advanced students of linguis-
tics) listened to the turns in sequential order and annotated indepen-
dently from each other each word as neutral (default), PDS or as
belonging to one of 9 other classes. If three or more labelers agreed,
the label was attributed to the word (majority voting MV); in paren-
theses, the number of cases with MV is given for the considered
classes: PDS (1260), neutral (39169).

For the present study, we mapped the words onto syntactically/
semantically meaningful chunks [9]. We first selected neutral and
PDS chunks (Call), and in addition, only /Aibo/ tokens that are ei-
ther neutral or PDS (CAibo) in order to keep the data as compa-
rable as possible with the two other sets, and balanced this subset
accordingly. For CAibo, we approached the conditions of balanced
speaker numbers per split, and identical amounts of utterances of

both classes per speaker. 21 of the speakers had at least one such
turn in both intended classes. Using all their turns in class-balance
led to a total of 220 turns of 21 speakers opposing the 192 (2 classes
x 24 speakers each x 4 predefined sentences) and 24 for mothers and
non-mothers, each. Three cross-fold splits have been constructed
per group meeting the requirements of speaker-independence and
balancing in terms of classes and speakers. For mothers and non-
mothers this is accomplished straight-forwardly by separating them
into groups of 8 subjects per split. For CAibo, this had to be balanced
as turn-couple numbers vary between 2 and 28 per speaker. A split-
ting could be found that preserves school and gender balance as well
as variance of samples per speaker while having 7 speakers within
each split. For Call, an according splitting strategy was chosen. As
586 PDS chunks oppose 1998 neutral chunks, it was decided upon
3x up-sampling of the first throughout classifier training to obtain
balance.

3. FEATURE EXTRACTION

A strictly systematic generation of features was chosen for the con-
struction of a large feature space as basis for subsequent selection of
relevant features. Our basis is a set of 37 typical acoustic Low-Level-
Descriptors (LLD) well known to carry information about paralin-
guistic effects shown in Tab. 1. We group the features into the com-
mon types duration (D), energy (E), pitch (P), formants (F), cepstral
(C), and voice quality (V). Duration features thereby model temporal
aspects having milliseconds (ms) as unit. Voice quality is covered by
jitter and shimmer (micro-perturbations based on pitch and intensity,
respectively) and Harmonics-to-Noise Ratio (HNR).

In order to calculate LLDs, first the speech signal is transformed
to 16 kHz, 16 bit. In general, a Hamming window function is used,
except for the calculation of F0 and HNR where a Hanning window
has been chosen. We use 100 fps with semi-overlapping windows.
Energy resembles simple log frame energy. F0 and HNR calcula-
tion base on the time-signal ACF with window correction. Formants
base on 18-point LPC with root-solving and a pre-emphasis factor
α = 0.7. F0 and formant trajectories are globally optimized by
use of Dynamic Programming. LLDs are smoothed by according
techniques as semi-tone-interval filters or simple moving average
low-pass-filtering to overcome noise. As a next step we add delta
coefficients for each LLD. Following the typical static classification
strategy used in the related recognition of emotion, we next employ
a total of 19 statistical functionals to each of the 2x37 LLDs. The
obtained multivariate time series of variable length is projected on
a single 1406 dimensional feature vector. Here again we decided
for a typical selection of common functionals covering the first four
statistical moments, quartiles, extremes, ranges, positions, and zero-
crossings as depicted in Table 1. The three position related func-
tionals lead to a sub-group of features with the physical unit of ms
which are treated as duration features, though having a number of
diverse LLDs as basis. We refrained from inclusion of further dura-
tion related features such as those based on e.g. lengths of pauses or
syllables, because this information cannot easily be integrated in the
strictly systematic generation approach: it is modelled in a general
value series rather than in a time series. The number of features per
type is given in Tab. 3.

4. CLASSIFICATION

We computed a 3-fold cross-validation with Random Forests (RF)
and Support Vector Machines (SVM) with polynomial kernel and
pair-wise mulitclass discrimination. We report the F value as a unique
performance measure; here, F is defined as the uniformly weighted
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Low-Level-Descriptors (2x37) Functionals (19)
(Delta) Pitch (F0) Mean, Centroid, Std. Dev.
(Delta) Energy Skewness, Kurtosis
(Delta) Envelope Zero-Crossing-Rate
(Delta) Formant 1-5 Amplitude Quartile 1,2,3
(Delta) Formant 1-5 Bandwidth Quartile 1 - Minimum
(Delta) Formant 1-5 Frequency Quartile 2 - Quartile 1
(Delta) MFCC Coefficient 1-16 Quartile 3 - Quartile 2
(Delta) HNR Maximum - Quartile 3
(Delta) Jitter Max., Min. Value, Range
(Delta) Shimmer Relative Max., Min. Pos.

Pos. 95% Roll-Off-Point

Table 1. Low-Level-Descriptors and functionals used throughout
systematic construction of a large acoustic feature space

harmonic mean of accuracy and unweighted mean recall (note that
the data is partly unbalanced.) Results reported employ speaker-
normalization which is realized by a simple normalization of each
feature by its mean and standard deviation for each speaker individ-
ually. Thereby the whole speaker context is used. This has to be seen
as an upper benchmark for the ideal situation, where a speaker could
be observed with a variety of utterances within the aimed at speak-
ing styles. Yet, it is not necessary to know explicitly the according
class for this purpose. Tab. 2 displays the classification results within
the groups M, A, and C, and for M and A taken together, as well as
across the groups, i.e., one group for training, the other one for test-
ing. It can be seen that modelling M and A together results in some
lower performance. Across groups, performance is at chance level if
children are taken as either train or test sample (not shown in Tab. 2).
Classification is best for the ‘real’ mothers M for both SVM and RF,
and considerably lower for the ‘fake’ mothers A. Obviously, using
only information pertaining to one word makes the task more dif-
ficult (CAibo) than using chunks (Call) — although there are many
one-word chunks such as /Aibo/, /stop/, etc. Note that the classifi-
cation task for the children could be expected to be more difficult
because the reference is perceptual labelling and not, as is the case
for mothers and adults, a clear experimental setting; yet FRF values
for both CAibo and Call are higher than those for the A group. This
indicates that behaving ‘as if’ in an imaginary setting, that is acting,
yields less pronounced characteristic traits than addressing ones own
child or a pet-robot, respectively.

5. MOST IMPORTANT FEATURE TYPES

Two different strategies are used to find most relevant feature types:
first, the feature space is transformed by Principal Component Anal-

Train Test FRF FSV M

M M 76.6 78.6
A A 70.3 74.5

M+A M+A 68.7 65.6
CAibo CAibo 71.4 64.2
Call Call 72.8 71.1

M A 68.8 65.1
A M 72.4 73.4

Table 2. Classification Results for RF and SVM within groups (top)
and across groups (below)

ysis (PCA) in order to obtain a primary de-correlated representation.
Next, the 50 PCs with according highest Eigen-value are chosen
to actually reduce the dimensionality by conserving utmost covered
variance. We decided for a fixed number of PCs over a cut-off cri-
terion as ROC-curves to keep conditions constant throughout splits
and data-sets. The number of 50 PCs resembles a reduction to 3.5%
at this point and is a reasonable figure with respect to interpretability
and computational effort for the subsequent secondary selection of
best PCs. This second selection process employs the target classifier
as wrapper-function in the closed-loop to optimize a highly compact
set of PCs. Thereby the overall error is minimised for the latter clas-
sifier, as this is employed as optimization criterion. Likewise, instead
of simply combining features of single high relevance, we rather find
a further de-correlated complementary set. As search function, we
use the popular Sequential Forward Floating Search (SFFS). In gen-
eral, search functions do not lead to the overall optimum, even if
employing a high number of back-steps in the case of SFFS. Thus
another hard criterion was chosen, to keep conditions constant: 5
PCs were selected by SFFS, as a compromise between the observed
optimum between 3 and 5 PCs throughout splits and sets in terms
of maximum accuracy. As each PC still consists of a linear super-
position of all original 1406 features, we have to cut off for a final
time at this point to obtain an interpretable result. Due to the often
very flat slope of the absolute contribution of features within PCs,
we limited the maximum number for interpretation to 15; as second
criterion within these 15 PCs, we took an Eigenvector value half the
size of the maximum value. This strategy is applied three times for
each possible pair of splits to overcome singular effects. We obtain
up to 225 (5 PCs x 15 features x 3 split configurations) after back-
transformation to the original feature space resembling a reduction
to 16%. As a secondary strategy we directly search optimal feature
sets in the original un-transformed feature space by use of SFFS.
This resembles the more usual approach to feature selection in the
field of emotion recognition. Yet it omits the first de-correlation step,
which often clusters features of the same LLD or functional, thereby
distorting the outcome if compression is very high. Also, final fea-
ture set sizes have usually to be kept larger without previous PCA.
We decided in favour of the best 50 features for each pair of splits;
a cut-off criterion would introduce variance on several layers, be-
cause ROC-curves are often overlaid with statistical noise or show
very flat slopes. Generally, the wrapper classifier for SFFS thereby
consequently is SVM, known as SVM-SFFS.

D E P F C V D E P F C V

# 222 64 32 480 512 96 222 64 32 480 512 96

Mothers Adults

PC 16.8 2.5 5.4 40.6 26.8 6.2 15.6 1.8 6.2 17.4 59.0 0.0

SFFS 13.3 4.7 7.3 32.7 36.7 8.7 18.7 2.0 4.0 22.7 51.3 1.3

CAibo Call

PC 13.5 2.4 2.4 23.0 55.6 3.0 5.9 6.9 6.2 33.8 37.9 8.9

SFFS 17.3 3.3 3.3 23.3 47.3 5.3 6.7 5.3 6.7 29.3 51.3 0.7

Table 3. Summary of feature selection with feature types abbrevi-
ated as introduced in section 3; higher values denote higher impact;
description in the text

Tab. 3 summarizes the distribution of features for M, A, CAibo,
and Call for the three splits and for PCs and SFFS across all three
pairs of splits; the impact (the ‘share’) of each feature type is shown
in percent. To give an example: the SFFS sum of D features for M
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was observed to amount to (11+4+5)=20; 20/150=13.3%. The val-
ues per line for each speaker group sum up to 100% modulo round-
ing errors.

Most of the time, PC and SFFS selections yield similar results.
Note that of course, the values depend as well on the overall number
of features per type; we thus have to be cautious if comparing across
types but we can do that for the same type across groups.

D E P F C V

group 222 64 32 480 512 96

M + - + + - +
A + - + - + -
CAibo + - - - + +
Call - + + + + -

Table 4. ‘Quantization’ of Tab. 3: ‘+’ meaning ‘more important than
in the other groups’ (-)

.

In Tab. 4 we try to binarize the information given in Tab. 3: ‘+’
means that in these groups, this feature type has been exploited to a
higher extent than in the groups with ‘-’. Interestingly, there is no
indication that either the language (English vs. German) or the age
group (adults vs. children) are decisive factors: the signs span always
across languages or age groups. (Note that this holds even if one of
the binary differences would turn out not to be significant.) Factors
that could be important are: same/different segmental structure, real
mother-child interaction vs. imagined/pet-directed, and maybe even
prompted (in the case of M and A) vs. non-prompted speech. Dura-
tion (D) seems to be more important, if segmental structure is kept
constant (higher values for {M, A, CAibo}, lower ones for Call). The
opposite holds for energy (E). Pitch seems to be less important if it
is the same short word with identical segmental structure (CAibo).
Formants (F) are foremost used by M, second comes Call with its di-
verse segmental structure. MFCCs (C) are less exploited by M than
by the other groups. Voice quality features (V) are most exploited
by M, second comes CAibo. The two differences between M and A
are thus a higher use of formants (F) and voice quality features (V)
for M vs. a higher use of MFCC features (C), and rather no use of
voice quality features (V) for A. MFCC features are modelling the
spectrum in a more coarse-grained way than formants; accordingly
there seems to be a sort of trading relation between formants (F) and
MFCCs (C): if the share of the one is higher, the share of the other is
lower. The average of F and C shares are close together for all four
groups and for PC and SFFS alike: lowest for M (PC: 33.7%) to
highest for Call (SFFS: 40.3%). It is more difficult to assess the role
of feature types for the children, in comparison to M and A, because
of the difference in segmental structure: CAibo is even more uniform
than the sentences of M and A, and Call is free speech. However, it
seems more likely that differences are rather due to these segmental
factors than to a principled difference between CDS and PDS. Tab.
4 gives no indication that prompted vs. non-prompted is mirrored
in the use of feature types because for all types, same signs can be
found for both prompted and non-prompted speech.

Whereas for CAibo, only 10.5% of the features which represent
our PCs are delta features, for Call, it is 41.2%; for the SFFS fea-
tures, it is 21.3% for CAibo, and 38.0% for Call; M and A are in
between CAibo and Call. This might indicate that larger units with
segmentally different structure are better modelled with delta fea-
tures, in contrast to short units such as our /Aibo/ words, or to units
with partly identical segmental structure (M and A).

6. CONCLUDING REMARKS

The aim of this paper has been a comparison of four different con-
stellations of speaker-addressee in two different speech registers:
neutral and intimate. Within a state-of-the-art brute-force approach,
we used a large, systematically generated feature vector for auto-
matic classification and for subsequent interpretation of ‘most im-
portant’ types of features. Classification performance for this 2-class
problem was between 70% and 80%, highest for the ‘real’ mothers,
lower for the ‘fake’ mothers. We have seen that differences in lan-
guage (English vs. German) or age-group (adults vs. children) do not
seem to be relevant. The higher use of formants for M might indicate
the well-known tendency towards hyper-articulation for CDS.
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