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ABSTRACT

SensorScope is a collaborative project between network, sig-

nal processing, and environmental researchers that aims at

providing a cheap and out-of-the-box environmental monitor-

ing system based on a wireless sensor network. It has been

successfully used in a number of deployments to gather hun-

dreds of megabytes of environmental data. With data gather-

ing techniques well mastered, the efficient processing of the

huge amounts of the acquired information to allow for use-

ful exploitation has become an increasingly important issue.

In this paper, we present a number of challenging and rele-

vant signal processing tasks that arise from the SensorScope

project. We believe the resolution of these problems will ben-

efit from a better understanding of the underlying physical

processes. We show an example to demonstrate how physi-

cal correlations between different sensing modalities can help

reduce the sampling rate.

Index Terms— Wireless sensor networks, environmental

monitoring, environmental signal processing, sampling, new

challenges

1. INTRODUCTION

A Wireless Sensor Network (WSN) [1] is a self-organized

multi-hop wireless network, composed of small communicat-

ing devices called sensor motes which are generally deployed

over an area of interest. Thanks to embedded or external sen-

sors, these motes are able to gather various information about

their environment, such as wind speed, air temperature, or soil

humidity. WSNs usually operate in an n-to-1 communication

paradigm, in which collected data is forwarded to a base sta-

tion (sink). The sink is then in charge of sending this data to

a server where it is stored and further processed.

Environmental monitoring is one of the most important

applications of WSNs. Current data collection techniques are

indeed rather limited and make use of very expensive sensing
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stations, leading to a lack of appropriate observations. Thanks

to a WSN architecture, it is possible to deploy a large quantity

of cheap stations to get dense spatial and temporal measure-

ments that can be used to create prediction models of poten-

tially dangerous climate changes.

In this paper, we first describe the SensorScope project,

which is a WSN-based system with applications in environ-

mental monitoring. Section 2 summarizes the development

of the system, including its construction, networking issues,

and field experiments. During the last 15 months, the Sensor-

Scope system has been successfully deployed at several loca-

tions, generating a huge amount of environmental data. With

the data gathering technique well mastered, now the ques-

tion becomes: how to efficiently process the data from sensor

network measurements to allow for useful exploitation? In

the second part of the paper, we present a list of challenging

and relevant signal processing problems that arise from our

SensorScope project. We believe the resolution of these prob-

lems will benefit from a better understanding of the underly-

ing physical processes. In Section 4, we show an example

to demonstrate how physical correlations between different

sensing modalities can help reduce the sampling rate.

2. THE SENSORSCOPE PROJECT

Although environmental monitoring is getting a lot of atten-

tion nowadays, only few efforts have been put into improv-

ing current data collection techniques. Most measuring cam-

paigns are indeed based on lofty sensing stations, and their

effectiveness is limited due to numerous drawbacks:

• High cost: They are expensive (e.g., e 60 000 —

$ 86 000 — for a high-precision station), allowing only

for the deployment of a few stations.

• Reduced flexibility: They are large and heavy, pre-

venting them from being easily moved to different lo-

cations on the monitored area.

• Inefficient data storage: They commonly use embed-

ded data loggers that require manual downloading, re-

sulting in limited storage and no immediate feedback.
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Measure Sensor Range

Air humidity Sensirion SHT75 0 – 100 % ± 2 %
Air temperature Sensirion SHT75 -20 – 60◦C ± 0.3◦C
Precipitation Davis Rain Collector 0 –∞mm ± 10%
Soil moisture ECH20 EC-5 0 – 55 % ± 10%
Solar radiation Davis 0 – 1500 W/m2 ± 5%
Surface temperature Zytemp TN901 -20 – 70◦C ± 0.6◦C
Water content Irrometer Watermark -200 – 0 kPa unknown

Wind direction Davis Anemometer 0 – 360◦ ± 7◦

Wind speed Davis Anemometer 1.5 – 79 m/s ± 5%

Table 1. Environmental values gathered by a SensorScope

station.

As a result, there is a lack of appropriately dense spatial

and temporal observations, which prevents environmental re-

searchers from providing accurate climate models. From this

perspective, it is highly relevant to rely on a WSN, which al-

lows to gather data at the required density. Moreover, thanks

to wireless communications, measures may be automatically

transmitted to a database server, allowing for real-time (e.g.,
storms) as well as long-term (e.g., ice melting) monitoring.

SensorScope provides such a new generation of environmen-

tal monitoring system centered around a WSN.

2.1. The Sensing Stations

Stations include a TinyNode sensor mote1 and 7 external sen-

sors that gather a total of 9 different environmental measures.

The set of these sensors, provided in Table 1, has been care-

fully chosen with the help of environmental researchers to es-

pecially target hydrology and micro-climatology domains. To

ensure the quality of the measurements, all sensors are cali-

brated before deployment. In a first step, they are tested in the

laboratory, and in a second step their readings are compared

to reference outdoor sensors over several days. We require the

correlation coefficient obtained for the measured values to be

higher than 0.98. The price of a station, including all sensors,

is around e 900 ($ 1280).

To get a sufficient autonomy for long-term outdoor oper-

ations, stations also include an energy management module

based on solar energy. It is composed of a solar panel and

two batteries: the first one is primarily used to power the sta-

tion and is charged directly thanks to the solar power, while

the second one is used as a backup buffer in case of a failure

of the primary battery. Through the various campaigns (see

Table 2), we proved that this system is reliable. These deploy-

ments indeed lasted up to 6 months during which all batteries

were always fully charged, even in case of cloudy weather.

This theoretically makes the batteries’ recharge cycle-count

the only limiting factor for long-term deployments.

1http://www.tinynode.com

2.2. Networking

Using a multi-hop WSN makes it possible for SensorScope to

gather data over a wide area with only one sink and to arbitrar-

ily modify the monitored area by moving/adding/removing

stations whenever needed. Since wireless stations are moni-

toring their network neighborhood, these changes are quickly

and automatically incorporated without the need to reconfig-

ure the network. A station may also fail without impacting on

data gathering: if it was indeed part of a route to the sink, a

new route will automatically be created and used to replace

the deprecated one.

Besides delivering gathered data to the sink, the network

is also responsible for time synchronization. To allow for use-

ful exploitation of data, each measure must indeed be time-

stamped, and since the stations are subject to a substantial

time drift (crystals have a correct but not very high precision),

it is needed to regularly synchronize the stations. In Sensor-

Scope, the current time is simply regularly propagated from

the sink to the network by mean of multi-hopping. The WSN

used is also very energy-efficient and is able to turn off the ra-

dio (which is the biggest energy consumer in the system) most

of the time, without impacting on data gathering. Thanks to

this mechanism and the solar energy system, stations should

theoretically never undergo a power outage.

2.3. Deployments

Over the last 15 months, we have run 6 outdoor deployments,

ranging in size from 6 to 97 stations, from the EPFL campus

to high mountains. Table 2 provides details about them. Dur-

ing these campaigns, we gathered hundreds of megabytes of

environmental data which are freely available for download

on our website2.

One of the most challenging deployments occurred on the

rock glacier located at 2 500 m (8 200 ft) on Le Génépi, in

Switzerland. This site was chosen for always being the source

of dangerous mud streams during intense rain periods, which

caused several victims in the last decade. The authorities in

charge did not have any measures of rain in that site, and

asked us to deploy SensorScope there. Gathered data during

this campaign allowed us to model a particular micro-climate

that plays an important part in the mud streams, and that will

help in flood monitoring and prediction on the site.

3. CHALLENGES IN SIGNAL PROCESSING

We can see from Table 2 that the deployments of the Sensor-

Scope project have generated a large amount of environmen-

tal data. How to efficiently process the acquired data to al-

low for useful exploitation has now become an increasingly

important issue. In this section, we present a list of challeng-

2http://sensorscope.epfl.ch
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Place Dates Size Data Characteristics

Campus of EPFL 2006-11-01 – 2007-05-15 97 stations 17 GB Urban environment

Plaine Morte 2007-03-12 – 2007-03-16 13 stations 32 MB Alpine glacier

Campus of EPFL 2007-07-18 – n/a 10 stations 48 MB Urban rooftops

Morges 2007-08-03 – 2007-09-04 6 stations 32 MB Border of a river

Le Génépi 2007-08-27 – 2007-11-05 16 stations 247 MB Rocky glacier in high mountain

Grand St Bernard 2007-09-13 – 2007-10-26 23 stations 303 MB Pass in high mountain

Table 2. All SensorScope deployments, performed since the beginning of the project.

Fig. 1. Data sampling and interpolation example during

the Genepi deployment: air temperature snapshot over the

glacier.

ing and relevant signal processing tasks that arise from the

SensorScope project for environment monitoring.

3.1. Sampling and Faithful Reconstruction of the Physi-
cal Phenomena

The sensor network for environmental monitoring can be

viewed as a spatial-temporal sampling device for some phys-

ical phenomenon of interest (e.g., air temperature or wind

speed). While the physical process itself is a function f(x, t)
of the continuous spatial variables x ∈ R

3 and the time vari-

able t, the measurements we get from the sensor network are

only samples (“snapshots”) of the continuous phenomenon

at discrete spatial locations {xk}K
k=1 and time instances

{mT}m∈Z
(see Fig. 1). An important question is, of course,

if the samples f(xk, mT ) are a faithful representation of

the original function f(x, t). If so, how can we reconstruct

f(x, t) from f(xk, mT )? If not, what approximations can

we get based on the samples f(xk, mT ).
As a fundamental and ubiquitous issue in signal process-

ing, the sampling and reconstruction process has been exten-

sively studied in the past, with prominent results represented

by the Kotelnikov-Shannon-Whittaker sampling theorem and

its various extensions (see, for example, [2] and the references

therein). In the classical setting, the signals to be sampled are

assumed to be bandlimited in the frequency domain. For sig-

nals that are not strictly bandlimited (as is often the case in

practice), one usually needs to apply a lowpass antialiasing

filter on the signals before sampling. This practice leads to

reconstructed signals that are the optimal L2 approximations

of the original signals.

However, the distributed setting of the sensor networks

poses new difficulties that are not well-handled by the clas-

sical sampling approach. Though we can easily apply an an-

tialiasing filter along the temporal dimension of the signals, it

is physically infeasible for us to apply a spatial filter before

sampling, since the sensors can only observe the local value

of the physical phenomenon. This lack of spatial filtering de-

termines that spatial aliasing will be a key issue in the sam-

pling process of the sensor network. How to recover or get a

good approximation of the original signals in the presence of

spatial aliasing becomes a challenging sampling problem that

needs to be carefully addressed.

3.2. Data Integrity in the Sensor Network Measurement

An attractive feature of employing a WSN (such as the

SensorScope) in environmental monitoring applications is

that we can deploy a large number of inexpensive and

lightweight sensing stations in the area of interest and conduct

unprecedently dense observations of the physical processes.

However, as a price to pay for using simple sensing devices,

the measurements we get are not as reliable and accurate as

what we would get from the traditional expensive and heavy

whether stations. Consequently, it is desirable and sometimes

necessary to preprocess and improve the quality of the raw

data from the sensor networks before we present them to

environmental researchers. In particular, the related problems

we need to address include the following:

• Sensor calibration: Although all sensors have been

pre-calibrated before deployment, their readings are

still subject to drift during long-term operations. Note

that manual calibrations often become impractical if

the deployment is in remote areas. In these cases, how

to perform automatic sensor calibration from the gath-
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ered data becomes a challenging problem. As shown

in [3], the feasibility of automatic calibration relies

on a good understanding of the correlations between

different measurements.

• Outlier detection: Due to various reasons, some sen-

sors may fail; and worse yet, the failed sensors might

not always be able to report this situation to the cen-

tral station. It is therefore important to detect outliers

in the sensor measurement data in order to improve the

robustness of the overall system.

• Denoising: Noise is inherent in any data acquisition

process, and hence denoising is a key step in improving

the quality of the sensor network measurements.

4. HOW PHYSICS MAY HELP — AN EXAMPLE

We believe the successful resolution of the signal process-

ing tasks listed in Section 3 depends on, among other things,

a better understanding of the underlying physical processes.

Although each sensor has low precisions and might be un-

reliable, we have a large number of these sensors observing

the same physical reality, and therefore their measurements

should be correlated. In this section, we present a simple ex-

ample to show how signal processing algorithms can bene-

fit from exploiting the physical correlations between different

sensor measurements.

We know from the discussion in Section 2 that each sensor

station SensorScope is equipped with multiple sensors capa-

ble of measuring different physical quantities. Suppose we

are measuring N different quantities3 f1(t), f2(t), . . . , fN (t)
(e.g., air temperature, moisture, etc.). Since these quantities

are different manifestations of the same physical reality, they

are often linked by some given physical law. In the simplest

case, we assume these functions satisfy a system of linear

differential equations with constant coefficients. In the fre-

quency domain, this constraint can be written as

A(ω)
(
f̂1(ω), f̂2(ω), . . . , f̂N (ω)

)T

= 0, (1)

where f̂i(ω) is the Fourier transform of the ith function fi(t),
and A(ω) is a known M -by-N matrix of functions of ω.

If we assume that each function is bandlimited to [−σ, σ]
for some σ > 0, but only take samples at a fraction of the cor-

responding Nyquist rate (1/T0 = σ/π), can we still perfectly

reconstruct the original signals? The following proposition

gives a positive answer, in which the physical correlations

given in (1) plays a key role.

Proposition 1 The N functions f1(t), f2(t), . . . , fN (t) can
be perfect reconstructed from their sample values {fi(nKT0)}

3For simplicity of notation, we only consider 1-D functions.

(1 ≤ i ≤ N, n ∈ Z) if and only if the following matrix

V (ω)
def
=

⎛
⎜⎜⎜⎜⎜⎝

IN IN · · · IN

A(ω) 0 · · · 0
0 A(ω + c) · · · 0
...

...
. . .

...
0 0 · · · A (ω + (K − 1)c)

⎞
⎟⎟⎟⎟⎟⎠

has full column rank for every ω ∈ [−σ,−σ+c], where IN is
the N -by-N identity matrix, K is some positive integer rep-
resenting the undersampling factor, and c = 2σ/K.

Since V (ω) is a matrix with N + MK rows and NK
columns, an immediate consequence of the full column rank

condition in Proposition 1 is the following upper bound on the

undersampling factor:

Corollary 1 To perfectly reconstruct the N functions f1(t),
f2(t), ..., fN (t), one must have

K ≤ N

N − M
, (2)

where M is the number of rows of A(ω).

Note that the upper bound in inequality (2) is an increas-

ing function of M (i.e., the number of equations provided by

the physical model). This result is fairly intuitive, as it shows

that the more prior information we have about the physical

correlations between the signals, the less samples we need to

take while still being able to fully reconstruct the original sig-

nals.

5. CONCLUSION

In this paper, we presented a list of challenging and rele-

vant signal processing tasks that arise from the SensorScope

project, which is a WSN-based system with applications in

environmental monitoring. We believe that the successful res-

olution of these signal processing problems can greatly ben-

efit from a better understanding of the underlying physical

processes. One example is to exploit the correlation between

different physical quantities measured by the sensor stations.
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