GEO-LOCALIZATON

EUCLIDEAN MATRIX COMPLETION PROBLEMS IN TRACKING AND

ABSTRACT

We consider the problem of emitter tracking using receivigda
strength (RSS) measured at a number of in-range access pat

when some of the AP locations are unknown. This can be formu-

lated as a Euclidean distance matrix completion problemMEB)
to which an iterative distributed weighted multidimensibacaling

(dwMDS) algorithm can be applied to simultaneously tracktem
ters and localize APs. The algorithm is illustrated usingl-teme
data collected by the University of California at San Diege€SD)
wireless topology discovery project.

Index Terms— distributed multidimensional scaling, sparsity
constrained tracking, wireless mobility.

1.

INTRODUCTION

Wireless localization and tracking has attracted tremesdiaterest
from a wide range of sectors such as security, ecology, ptyppen-
trol, and targeted marketing. Accurate location of targets facil-
itate a number of location based services in these domarsex-
ample, in perimeter surveillance a network of rf sensorsbheansed
to estimate the location of intruders in the network. Foaitesttores

decade.

such as Walmart, these services can be used to locate equipme
based on their location in the store. The problem of estimgatirget

inventory in a warehouse or can advertise different praitusers

locations based on range information (e.g., received bgjrengths

or time of arrival) has been an active area of research ddnm¢ast

Mulltilateration can be used to locate energy emitting éésg
based on the range information provided by the targets tdi-mul
ple access points (AP) or other receiving sensors. Whee ter
targets are not known, the problem of estimating targetiooa can

be formulated as an Euclidean distance matrix completioblpm.
Previous approaches for solving the EDMCP use semi-definite

mensional scaling (dwMDS) algorithm introduced in [2] tdvaathe
plied to geo-localize the unknown AP locations in the wissl@et-

work in addition to obtaining target coordinates. We codelwith a
tracking illustration of our algorithm on real-time datdss&om the

Wireless Topology Discovery (WTD) project at the UCSD casipu
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sured distances between X and K, X and U, and K and K the Eu-
tances between X, K and U.

Fig. 1. Wireless users X and access points (AP) U are at unknown
clidean matric completion problem is to recover all paievidis-

positions while access points K are at known positions. Ginea-

2. PROBLEM FORMULATION
The problem of multi-emitter tracking can be representeolésvs.
Let {x;}~, denote the unknown locations &f users in the wire-

less network. APs in the network measure received sigrnahgtin
(RSS) from these users. Lék;}2, and{u;},; be the locations
of the APs, where the first/ AP locations are known and the last

P locations are unknown. Denote the RSS measurements between
targeti and APj as RS$;. Atany time, a targetis only in range of
a small subset of the APs and hence the matrix of RSS valuedyis o
] _ partially known. Our goal is to estimate the locations of thugets
many users or when some of the locations of APs in range of théx;} and the locations of the unknown ARs;} given these RSS
measurements. A pictorial representation of the probleshdsvn
gramming methods [1] which are not scalable. In this paper, w one recover the connectivity of the entire network?
propose to use the sparsity penalized distributed weigtmteitidi-
EDMCP. Furthermore, we show how this general solution caapbe

in Figure 1. The fundamental question is: given the knowdedfy
connectivity (edges) of only some edges of a Euclidean rmtvean

3. PROPOSED SOLUTION

Denote the distance between emitteind APj asd; ;. Herei €
1,...,N} andj belongs to{1,...,M, M +1,..., M + P} cor-

responding to thél/ known andP unknown APs. In many envi-

ronments it can be shown that the RSS is approximately logyalb
in its distribution [3], i.e., if the recieved rms pow#}; ; is in mil-

liWatts, then RSS; = 101log,,(Ps,;) is approximately Gaussian



Thus RS$; in dBm is typically modeled as whereS is the collection of all minimal vertex separators@f e is
d a column vector of ones and(.S) is a matrix formed by using the
RSS,; ~ N(RSS — 10n,log (#) ,002) (1)  setof vertices irb.

) o 0 . . A solution to the exact completion problem for an arbitrampkn
whereoy is the standard deviation of the received power in dBMggt of partial matrix entries is not generally in closedid6]. A
and RS$ is received power in dBm at a reference distarigeThe  gpecial case for which a closed form solution does existiergin
constantn,, is referred to as the path-loss exponent and it dependg,o following
on the environment. We use maximum likelihood estimaticroio- o
pute the rangey; ; from RSS,;. The maximum likelihood estimator Theorem 3.2. Let A be a(N + M) x (N + M) partial distance

of d; ; is given by matrix with rankk + 2 and the following structure:
- ((Rs)—RSS; ;)/10n;) _ | Au A
8i5 =dol0 i 28 (2 A Aot Ao | (6)

The complete inter-point distance matfix called the Euclidean

distance matrix, is a symmetric matrix of the form where Ayy is N x N, A1z is N x M, and Az is an M x M

matrix. Given,A11, A1z, there exists an unique Euclidean matrix
Dir Diz Diw completion toA given byAse = Az A Aq: if rank(Aq1) =

Dur Duz  Duu Proof. The set of nonadjacent vertices for the partially compléte d

whereD is the distance matrix between the known AP locations fance matrixA. defined in(6) is given by N, = {(i,j) [ N + 1 <

D = D7, is the distance matrix between the known AP locationsi,J < N + M}. The corresponding collection of minimal vertex
and the users, and the rest of the sub-distance matricesrilarly ~ Separators of the grahis a singleton se§ = {1,2,..., N}. This
defined. Among these sub-matrices, oBly;, is completely known. —guarantees that the graph associated Wlth the entridsi@thordal.
The distance matricé®y, andD.,, are partially known since dif- ASN >k +2,Bin (5) has rank + 2if A1, has ranks 4 2. Let
ferent users are within range of only a fraction of the knowd a 7 =  + 2. From Theorem 3.1, there exists a unique solution to the
unknown APs. For any matri defineD* as the matrixD with ~ exact completion problem. The eigendecomposition\ois given
some of its entries deleted and definas the matrixD with all of by

T
its entries deleted. With this notation, if the exponeptis known A =VAV",
then the incomplete Euclidean matrix of distances can bevezed  whereA = diag(\1, A2, ..., \) andV = [vi, va,..., v, ] are the
from the noiseless RSS measurements corresponding set of orthonormal eigenvectors. Vet [V{ V17T,
D.. D: N whereV, is N x r andVs is M x r. Then the sub-matrices can be
D* — . 2 pr (4) Witenas
* Dy, Ay = VAV
The objective is to reconstruct the complete distance m#dri A1z = VIAV]
in (3) from the RSS measurements. Ordeis recovered we can Ay = V3AVYE

recover the user tracks and unknown AP locations. We conside_. . . .

two cases: (a) the exact completion problem, i.e., when tee d SinceA 1 is full rank, the pseudo inverse df;; can be written as
_tances iD* are ava_ilable; (b) the approximate cpmple_tion problem, Al = Vl(vlTvl)*lAfl(vlTvl)*lvlT.

i.e., when only a noise contaminated versiodf is available.

Then

3.1. Exact completion problem An AT A
In the noiseless case( = 0) the problem of localizing the unknown = V2AVY (Vl (Vivy)'A™! (VfVl)*1Vf> VAV
APs and the targets can be formulated as an Euclidean distaac T
trix completion problem (EDMCP) [4,5]. This is a classicabplem = V2AV; = Az,
in geometry and can be stated as the problem of recoverirsgtrod O
all pairwise distances betweenpoints given only a subset of these
distances. A solution exists when a sufficient number ofienif Theorem 3.2 does not apply when all the points yielding the pa
D are specified. tial matrix A1; lie on ak-dimensional sphere such that rak )

Specifically, letA = ((a;;)) be anN x N partial distance isk + 1. Itis easy to verify that a solution exists for this case gsin
matrix inR*. LetG = (V, E) be an undirected graph witi =  Theorem 3.1, which is in fact unique, but Theorem 3.2 doeyietd
1,2,...,N, E = {(i,5) | a:is specified, and whose specified the optimal completion.
entries are chordal. This theorem can be applied to completion of the partial ixatr

Definition: A graph ischordal if each of its cycles of four or D™ defined in (4). Assume that ra(®xx) > k + 2, which requires
more vertices has a chord, which is an edge joining two nduss t the number) of known AP positions to be no less than+- 2.
are not adjacent in the cycle. Then a twg step procedure recov®srom D*. First recoveD .,

- ek D,r = Dj, from Dy, andDy,, by applying Thm. 3.2 to the upper
Theorem 3.1. [4] Every partial distance _matnqu", the graph of Ieftk(M +kN) y (Mkk+ N) sﬁbm);tr&pg:‘D%. Then, plugging F:ﬁe
whose _spe%med entries is chordal, admits a completion fstante solutionsD... andD ., into their places in the upper Igfi/ 4+ V) x
matrix in R”. The matrix completion is unique if if and only if (M + N) submatrix ofD* solve forD., andD,. = DZ, by a
second application of the theorem. Thus in this case all owkn

0 e’
B= ( e ) has rankk +2foranyS €S, (5)  entries inD can be recovered from*.

A(S)



3.2. Approximate completion problem

When only noisy measurememss= D* 4+ N of the partial distance
matrix D* are available an approximation to the Euclidean distance
matrix D can be obtained by formulating a nonlinear least square
problem. LetW be a symmetric weight matrix with nonnegative
elements, e.gw; ; = 1if a; ; is given and zero otherwise. Consider
the Frobenius norm minimization

st DeD, @)

whereo denotes the Hadamard product @nds the convex cone of
Euclidean distance matrices. The objective function camebeitten

as
. 2
min Z wij (@i —dig)”, (8)
2,7

min|[W o (A — D)}

s.t D eD.

A semi-definite programming solution to this problem is pro-
vided in [1] that does not scale well due to its high compotzi
complexity in the number of location§ + M + P. A lower com-
plexity iterative algorithm is the dwMDS algorithm of Co$# and
it directly yields location estimates by minimizing the aglent ob-
jective function over location vectors:

2

9)

leinzwi,j (aij — ||z — z4]|)
iy J

whereZ = [ki,...,kam,x1,...,Xn,U1....,up]| is the set ofM
known positionk; of the AP’s K, the set ofV unknown user posi-
tionsx;, and the set o unknown AP positionsi;. As in standard
MDS, the solution to (9) is not unique since rotations anddla
tions of the location matrix leave the objective functionanant.
However, by constraining the positioks to be equal to the known
AP positions (anchor nodes), as long as these known AP puasitio
not lie on a plane or a line, a unique solution can often beddidh
The dwMDS algorithm was reformulated in [8], [2] for target
tracking by introducing a sparsity penalty on changes inuber
part ({x;}) of the solution to (9) over time. This sparse dwMDS al-
gorithm is a distributed iterative procedure that can belémented
in a decentralized in-network manner. Furthermore, thedated
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Fig. 2. Campus map showing ti280 known AP locations. Only the
horizontal (x,y) part of the 3D coordinates (x,y,z) are show ad-
dition to these locations, there wer@0 APs at unknown locations.
Also shown is a sample RSS data from a single user to APs. The
sensed APs by the user are indicated in blocked red alonghéth
RSS measurements.

by the user everg0 seconds. The trace data were collected over
a 11 week period and then transferred to a centralized datalbase f
analysis. The data indicated that aroudtd) APs were sensed over
this time among which onlg00 of them had knowledge about their
locations.

The trace data collected consisted of the following infaiora
user identity, sample time, AP identity, RSS, and AC/bgtawer
indicator. The coordinates of the known APs were also pexviih
the database. Our objective was to recover user trajestoviar time
and to reconstruct the network topology (locations of thienaoan

weightsW; ; can be selected to emphasize more accurate RSS meaps) using available data. The map of the known AP locations o

surements and de-emphasize others. We adopt a two-stéprvefs
the dwMDS procedure to successively localize the unknovarsus
and APs that mimics the two step exact matrix completionguiace
discussed above. First dwMDS is implemented to recoveksrac

{mbz;} without using the RSSs measured with respect to the un-

known AP’s (U in Figure 1) then, substituting the estimatedk lo-
cations into the partial distance matrix we rerun dwMDS torer
the unknown AP location$§u; }.

4. APPLICATION TO UCSD WTD DATA

4.1. UCSD wireless trace data

The wireless topology discovery (WTD) projéatas undertaken
by researchers at University of California San Diego (UC$%))
The project collects data on dynamic characteristics andhehav-
ior in a real world wireless network. The primary objectivietioe
WTD project was to test and develop reliable routing pro®do
a geographically constrained wireless network. To coliieta,275

UCSD freshman were given HP Jordana PDAs which were equippe

with symbol802.11 compact flash cards and the WTD data collec-
tion software. The software recorded all access points §&Rsed

http://sysnet.ucsd.edu/wtd/

the UCSD campus and the data samples at a particular tinentnst
for a single user are shown in Fig. 2. The APs sensed by theauser
shown as filled circles. The corresponding RSS values (Z7)6aiz
shown next to these APs.

To reconstruct the user trajectories, we need to estimage us
locations over time based on measured RSS at the varioussacce
points. The RSS values provided in the database Wwéi¢ quan-
tized values betweemand31. Since the mapping from these quan-
tized values to the actual signal strength in dB is unknowsneeded

to calibrate the quantized numbers to signal strength salUeéis
was performed using an iterative least squares procedatrgigided
the best linear fit between the quantized values and thespumnel-
ing RSS value in dB [10].

5. SIMULTANEOUS LOCALIZATION OF TARGETS AND
APS

First, we consider all users that sense at lddstown APs and one
nknown AP. Using only the knowledge of the RSS values batwee
the users and the known APs, we estimate the locations ofsés u
in the network. We then use the set of user locations with tine ¢
responding RSS values to the unknown APs to estimate thiédaca

of the unknown APs. As a validation of our two stage dwMDS al-
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Fig. 3. Location estimates of three known APs that were made un

6. CONCLUSIONS

In this paper, we considered the problem of multitargetllzation
and tracking in a sensor (AP) network having some unknowsaen
locations. For the case where there is no noise in the RSSuneeas
ments we formulated this problem as a Euclidean distanceixnat
completion problem (EDMCP) and proposed a two step exact com
pletion algorithm to recover the complete pairwise distanmatrix
between all sensors and targets under some conditions oarike
of the distance matrix. The target positions and the unkneswnsor
(AP) locations can be recovered from the completed distamae
trix up to a rotation and translation. We then showed how a two
stage constrained dwMDS algorithm can be implemented &zt
recover the unknown locations. The sparsity constrained0® al-
gorithm was illustrated for tracking wireless PDA userdia UCSD
WTD data set.

Possible ways for us to improve upon the localization perfor
mance in the UCSD WTD data set are as follows. (1) to perform

known to the two stage dwMDS algorithm and the corresponding, inje local fits to the RSS model rather than a single dldiba

uncertainty ellipses. Only horizontal coordinates of tRec®ordi-
nate estimates are shown.

3007

4000

500+

6007

460 660
Fig. 4. Location estimates of the unknown APs are shown in red
The known AP locations are shown in blue.

gorithm for localization of targets and APs we performed fible
lowing experiment. We randomly choose a small set of knows AP
K and added them to the sEt of unknown APs. We reconstruct
the location of the APs in the augmented Eetising different user
trajectories in the sparsity penalized dwMDS algorithmajf [The
knowledge of some of the locations in the augmented/satlows

us to indirectly measure the rms error of the reconstruatibthe
unknown AP locations (see Fig. 3).

In Fig. 3 the known AP locations in the augmentédset are
indicated by filled circles. The mean estimates of the APshog/n
as triangles. The black ellipse is the standard error ellipsthe un-
known AP location. The error in the mean estimate of the ARloc
tion is roughly30m. The actual estimated locations of the unknown
APs are shown in Fig. 4. The known AP locations are indicated a
circles while the location estimates of the unknown APs a@v
as triangles.

This would allow us to adaptively fit the log-normal model &ach

AP based on its relative location in the network. (2) to ideu
side information, e.g., smoothness of user trajectoriéspgraphic

maps of the UCSD campus.
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