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AUCTION-BASED RESOURCE ALLOCATION FOR MULTI-RELAY
ASYNCHRONOUS COOPERATIVE NETWORKS

Jianwei Huang, Zhu Han, Mung Chiang, and H. Vincent Poor

ABSTRACT
Resource allocation is considered for cooperative transmissions in
multiple-relay wireless networks. Two auction mechanisms, SNR
auctions and power auctions, are proposed to distributively co-
ordinate the allocation of power among multiple relays. In the
SNR auction, a user chooses the relay with the lowest weighted
price. In the power auction, a user may choose to use multiplere-
lays simultaneously, depending on the network topology andthe
relays’ prices. Sufficient conditions for the existence (inboth auc-
tions) and uniqueness (in the SNR auction) of the Nash equilib-
rium are given. The fairness of the SNR auction and efficiency
of the power auction are further discussed. It is also proventhat
users can achieve the unique Nash equilibrium distributively via
best response updates in a completely asynchronous manner.

Keywords: Wireless Networks, Relay Networks, Auction The-
ory, Power Control, Resource Allocation

1. INTRODUCTION

Cooperative communication (e.g., [1]) takes advantage of the broad-
cast nature of wireless channels, uses relay nodes as virtual an-
tennas, and thus realizes the benefits of multiple-input-multiple-
output (MIMO) communications in situations where physicalmul-
tiple antennas are difficult to install (e.g., on small sensor nodes).
Although the physical layer performance of cooperative commu-
nication has been extensively studied in the context of small net-
works, there are still many open problems of how to realize its
full benefit in large-scale networks. For example, to optimize co-
operative communication in large networks, we need to consider
global channel information (including that for source-destination,
source-relay, and relay-destination channels), heterogeneous re-
source constraints among users, and various upper layer issues
(e.g., routing and traffic demand). Recently some centralized net-
work control algorithms (e.g., [2, 3]) have been proposed for co-
operative communications, but they require considerable overhead
for signaling and measurement and do not scale well with network
size. This motivates our study of distributed resource allocation
algorithms for cooperative communications in this paper.

In this paper, we design two distributed auction-based resource
allocation algorithms that achieve fairness and efficiencyfor multiple-
relay cooperative communication networks. Here fairness means
an allocation that equalizes the (weighted) marginal rate increase
among users who use the relay, and efficiency means an alloca-
tion that maximizes the total rate increase realized by use of the
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relays. Precise definitions of fairness and efficiency will be given
in Section 2. In both auctions, each user decides “when to usere-
lay” based on a locally computable threshold policy. The question
of “how to relay” is answered by a simple weighted proportional
allocation among users who use the relay.

In our previous work [4], we have proposed similar auction
mechanisms for asingle-relaycooperative communication net-
work, where users can achieve the desired auction outcomes if
they update their bids in asynchronousmanner. This paper con-
siders the more general case where there are multiple relaysin
the network with different locations and available resources. The
existence, uniqueness, and properties of the auction outcomes are
very different from the single-relay case. Moreover, we show that
users can achieve the desirable auction outcomes in a completely
asynchronousmanner, which is more realistic in practice and more
difficult to prove. Due to the space limitations, all the proofs are
omitted in this conference paper.

2. SYSTEM MODEL AND NETWORK OBJECTIVES

As a concrete example, we consider theamplify-and-forward (AF)
cooperative communication protocol in this paper. The system
diagram is shown in Fig. 1, where there is a setK = (1, ...,K)
of relay nodes and a setI =(1, ..., I) of source-destination pairs.
We also refer to pairi asuseri, which includes source nodesi and
destination nodedi.

For each useri, the cooperative transmission consists of two
phases. InPhase1, sourcesi broadcasts its information with
powerPsi . The received signalsYsi,di

andYsi,rk at destination
di and relayrk are given byYsi,di

=
√

PsiGsi,di
Xsi + ndi

and
Ysi,rk =

√

PsiGsi,rkXsi + nrk , whereXsi is the transmitted in-
formation symbol with unit energy at Phase1 at sourcesi, Gsi,di

andGsi,rk are the channel gains fromsi to destinationdi and re-
lay rk, respectively, andndi

andnrk are additive white Gaussian
noises. Without loss of generality, we assume that the noiselevel
is the same for all links, and is denoted byσ2. We also assume
that the transmission time of one frame is less than the channel
coherence time. The signal-to-noise ratio (SNR) that is realized at
destinationdi in Phase 1 isΓsi,di

=
Psi

Gsi,di

σ2 .

In Phase2, useri can use a subset of (including all) relay
nodes to help improve its throughput. If relayrk is used by user
i, rk will amplify Ysi,rk and forward it to destinationdi with
transmitted powerPrk,di

. The received signal at destinationdi is
Yrk,di

=
√

Prk,di
Grk,di

Xrk,di
+n′

di
,whereXrk,di

= Ysi,rk/|Ysi,rk |
is the unit-energy transmitted signal that relayrk receives from
sourcesi in Phase1, Grk,di

is the channel gain from relayrk to
destinationdi, andn′

di
is the receiver noise in Phase2. Equiva-

lently, we can writeYrk,di
=

√
Prk,di

Grk,di
(
√

Psi
Gsi,rk

Xsi,di
+nrk

)√
Psi

Gsi,rk
+σ2

+

n′
di
. The additional SNR increase due to relayrk atdi is
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Fig. 1. System Model for Cooperation Transmission

△ SNRik =
Prk,di

PsiGrk,di
Gsi,rk

σ2(Prk,di
Grk,di

+ PsiGsi,rk + σ2)
. (1)

The total information rate useri achieves at the output of maximal
ratio combining is

Rsi,di
(P r,di

) =
W log2 (1 + Γsi,di

+
∑

k △SNRik)
∑

k∈K 1{Prk,di
>0} + 1

. (2)

HereP r,di
= (Prk,di

, ∀k ∈ K) is the transmission power vector
of all relays to destinationdi, W is the total bandwidth of the
system, and1{·} is the indicator function. Equation (2) includes a
special case where useri does not use any relay (i.e.,Prk,di

= 0
for all k ∈ K), in which case the rate isW log2 (1 + Γsi,di

). The
denominator in (2) models the fact that relay transmissionsoccupy
system resource (e.g., time slots, bandwidth, codes). We write
Rsi,di

(P r,di
) to emphasize thatP r,di

is the resource allocation
decision we need to make, and it is clear thatRsi,di

depends on
other system parameters such as channel gains.

We assume that the source transmission powerPsi is fixed for
each useri. Each relayrk has a fixed total transmission powerPrk ,
and can choose the transmission power vectorP rk,d , (Prk,d1

,
..., Prk,dI

) from the feasible set

Prk ,

{

P rk,d

∣

∣

∣

∣

∣

∑

i

Prk,di
≤ Prk , Prk,di

≥ 0, ∀i ∈ I
}

. (3)

Finally, defineP r,d = (P rk,d, ∀k ∈ K) to be the transmission
power of all relays to all users’ destinations. The resourcealloca-
tion decision we need to make is the value ofP r,d.

From a network designer’s point of view, it is important to
consider bothefficiencyand fairness. An efficient power alloca-
tionP

efficiency
r,d maximizes the total rate increases of all users, i.e.,

max
{P rk,d∈Prk

,∀k∈K}
∑

i∈I

△Ri (P r,di
) , (4)

where△Ri (P r,di
) denotes the rate increase of useri due to the

use of relays△Ri (P r,di
) = max {Rsi,di

(P r,di
)−Rsi,di

(0) , 0}.
In many cases, an efficient allocation discriminates against users
who are far away from the relay. To avoid this, we also consider
a fair power allocationP fair

r,d, where each relayrk solves the fol-
lowing problem

max
P rk,d∈Prk

X

i

Prk,di
, s.t.

∂ △Ri (△SNRik)

∂ (△SNRik)
= ckqik · 1{Prk,di

>0},∀i ∈ I.

(5)

Hereqik ’s are the priority coefficients denoting the importance of
each user to each relay. Whenqik = 1 for eachi, all users who
use relayrk have the same marginal utilityck, which leads to strict
fairness among users. In the special case where users are symmet-
ric and only use the same relayrk, the fairness maximizing power
allocation leads to a Jain’s fairness index [5] equal to 1. However,
the definition of fairness here is more general than the Jain’s fair-
ness index. Notice that a fair allocation is Pareto optimal,i.e., no
user’s rate can be further increased without decreasing therate of
another user.

Since△Ri (P r,di
) is non-smooth and non-concave (due to

themax operation), it is well known that Problems (4) and (5) are
NP hard to solve even in a centralized fashion. Next, we will
propose two auction mechanisms that can solve these problems
under certain technical conditions in a distributed fashion.

3. AUCTION MECHANISMS

An auction is a decentralized market mechanism for allocating
resources without knowing the private valuations of individual
users in a market. Auction theory has been recently used to study
various wireless resource allocation problems (e.g., timeslot al-
location [6] and power control [7] in cellular networks). Here
we propose two auction mechanisms for allocating resource in
a multiple-relay network. The rules of the two auctions are de-
scribed below, with the only difference being in payment determi-
nation.

• Initialization: Each relayrk announces a positivereserve
bid βk > 0 and aprice πk > 0 to all users before the
auction starts.

• Bids: Each useri submits a nonnegative bid vectorbi =
(bik, ∀k ∈ K), one component to each relay.

• Allocation: Each relayrk allocates transmit power as

Prk,di
=

bik
∑

j∈I bjk + βk

Prk , ∀i ∈ I. (6)

• Payments: Useri paysCi =
∑

k πkqik △ SNRik in anSNR
auction orCi =

∑

k πkPrk,di
in a power auction.

The two auction mechanisms that we propose are highly distributed,
since each user only need to know the public system parameters
(i.e.,W , σ2 andPrk for all relayk), local information (i.e.,Psi

andGsi,di
) and the channel gains with relays (Gsi,rk andGrk,di

for each relayrk, which can be obtained through channel feed-
back). The relays do not need to know any network information.

A bidding profile is defined as the vector containing the users’
bids,b = (b1, ..., bI). The bidding profile of useri’s opponents
is defined asb−i = (bj , ∀j 6= i), so thatb = (bi; b−i) . User i
choosesbi to maximize its payoff

Ui (bi; b−i,π) = △Ri (P r,di
(bi; b−i))− Ci (bi; b−i,π) . (7)

Hereπ = (πk, ∀k ∈ K) is the prices of all relays. It can be shown
that the values of the reserve bidsβk ’s do not affect the resource
allocation, thus we can simply chooseβk = 1 for all k.

The desirable outcome of an auction is called aNash Equilib-
rium (NE), which is a bidding profileb∗ such that no user wants
to deviate unilaterally, i.e.,

Ui

(

b
∗
i ; b

∗
−i,π

)

≥ Ui

(

bi; b
∗
−i,π

)

, ∀i ∈ I, ∀bi ≥ 0. (8)



Define useri’s best response(for fixedb−i and priceπ) as

Bi (b−i,π) =

{

bi

∣

∣

∣

∣

bi = argmax
b̃i≥0

Ui

(

b̃i; b−i,π
)

}

, (9)

which can be written asBi (b−i,π) = (Bi,k (b−i,π) , ∀k ∈ K).
An NE is also a fixed point solution of all users’ best responses.
Next we will consider the existence, uniqueness and properties of
the NE, and how to achieve it in practice. Although in generalNE
is not the most desirable operational point from an overall sys-
tem point of view, we will show later that the two auctions indeed
achieve our desired network objectives under suitable technical
conditions.

3.1. SNR Auction
We first consider the SNR auction where useri’s payment isCi =
∑

k πkqik △ SNRik.

Theorem 1 In an SNR auction with multiple relays, a useri ei-
ther does not use any relay, or uses only one relayrk(i) with the
smallest weighted price, i.e.,k(i) = argmink∈K πkqik.

Theorem 1 implies that we can divide a multiple-relay network
intoK + 1 clusters of nodes: each of the firstK clusters contains
one relay node and the users who use this relay, and the last cluster
contains users that do not use any relay. Then we can analyze
each cluster independently as a single-relay network as in [4]. In
particular, for a useri belonging to clusterk (i) ≤ K, its best
response function is

Bi,k

`

b−i,k , πk

´

=

(

fs
i,k

(πk)
“

P

j 6=i bj,k + βk

”

, k = k (i) ,

0, otherwise.
(10)

Note that useri’s best response is related only to the bids from
users who are in the same cluster. The linear coefficientf s

i,k (πk)
is derived as

fs
i,k (πk) = (11)

8

>

>

>

<

>

>

>

:

∞, π ≤ πs
i ,

(Psi
Gsi,rk

+σ2)σ2

Prk
Grk,di

Psi
Gsi,rk

W
2πkqik ln 2

−1−Γsi,di

−(Psi
Gsi,rk

+Prk
Grk,di

+σ2)σ2

, π ∈
`

πs
i , π̂

s
i

´

,

0, π ≥ π̂s
i ,

where

πs
i ,

W/ (2qik ln 2)

1 + Γsi,di
+

Prk
Grk,di

Psi
Gsi,rk

(Psi
Gsi,rk

+Prk
Grk,di

+σ2)σ2

, (12)

andπ̂s
i is thesmallest positive rootof the following equation inπ

πqik (1 + Γsi,di)−
W

2

„

log2

„

2πqik ln 2

W
(1 + Γsi,di)

2

«

+
1

ln 2

«

= 0.

(13)
In the degenerate case whereπ̂s

i > πs
i , we havef s

i,k (πk) = ∞
for πk < π̂s

i andf s
i,k (πk) = 0 for πk ≥ π̂s

i . Notice that the linear
coefficient is determined based on a simplethresholdpolicy, i.e.,
comparing the price announced by the relay with the two locally
computable threshold prices.

Now let us assume that all users use the same relayrk, then
from (6) and (10) we know that the total demand for the relay

power is
∑

i∈I

fs
i,k(πk)

fs
i,k

(πk)+1Prk , which can not exceedPrk . It is

also clear thatf s
i,k (πk) is a non-increasing function ofπk. Then

we can find a threshold priceπs
k,th such that

∑

i∈I

fs
i,k(πk)

fs
i,k

(πk)+1 < 1

whenπk > πs
k,th, and

∑

i∈I

fs
i,k(πk)

fs
i,k

(πk)+1 ≥ 1 whenπk ≤ πs
k,th.

Theorem 2 In an SNR auction with multiple relays, a unique NE
exists ifπk > πs

k,th for eachk.

Finally let us consider the property of the NE. For a single-
relay network, we show in [4] that the SNR auction achieves the
fair resource allocation (i.e. it solves Problem (5)) if at least one
user wants to use the relay at the threshold priceπth. In the
multiple-relay case, however, some relays may never be ableto
achieve a Pareto optimal allocation, which is a basic requirement
for a fair allocation. This is because if the relay announcesa high
price, no users will use the relay. If the relay decreases theprice,
there might be too many users switching to the same relay simul-
taneously such that an NE does not exist. On the other hand, we
can show the following:
Theorem 3 If there exists a NE such that each relay’s resource is
full utilized and each relay is used by at least one user, the corre-
sponding power allocation is fair (i.e., it solves Problem (5)).

3.2. Power Auction
Here we consider the power auction, where useri’s payment is
Ci =

∑

k πkPrk,di
. There are two key differences here com-

pared with the SNR auction. First, a user may choose to use mul-
tiple relays simultaneously here. Useri’s best response can be
written in the following linear form:Bi,k (b−i,k,π) = fp

i,k (π)
(

∑

j 6=i bj,k + βk

)

, ∀k ∈ K. To calculatefp
i,k (π), useri needs to

consider a total of
∑K

l=0

(

K

l

)

cases of choosing relays. For exam-
ple, when there are two relays in the network, a user needs to con-
sider four cases: not using any relay, using relay1 only, using relay
2 only, and using both relays. For the given relay choice in case
n, it calculates the linear coefficientsfp,n

i,k (π) for all k in closed-
form (this involves threshold policy similar to the SNR auction)
and the corresponding rate increase△Rn

i . Then it find the case
that yields the largest payoff,n∗ = argmaxn △Rn

i , and sets
fp
i,k (π) = fp,n∗

i,k (π) ∀k. Second, the linear coefficientfp
i,k (π)

depends on the prices announced by all relays. For example, ei-
ther a largeπk or a smallπk′ (k′ 6= k) can makefp

i,k (π) = 0, i.e.,
useri will choose not to use relayrk.

Similar to in the SNR auction, we can also calculate a thresh-
old priceπk,th for relay rk. In this case, we assume that all re-
lays announce infinitely high prices exceptrk, and then calcu-

lateπp
k,th such that

∑

i∈I

fs
i,k(πk)

fs
i,k

(πk)+1 < 1 whenπk > πp
k,th, and

∑

i∈I

fs
i,k(πk)

fs
i,k

(πk)+1 ≥ 1 whenπk ≤ πp
k,th.

Colloary 1 In a power auction with multiple relays, there exists
an NE ifπk > πp

k,th for eachk.

On the other hand, necessary condition for existence of NE aswell
as conditions for uniqueness are not straightforward to specify,
and are left for future research. We can characterize the property
of the NE as follows:

Theorem 4 If there exists a NE such that each relay’s resource is
full utilized and all users use all relays, the corresponding power
allocation is efficient (i.e., it solves Problem (4)).

3.3. Asynchronous Best Response Updates
The last question we want to answer is how the NE can be reached
in a distributed fashion. Since useri does not know the best re-
sponse functions of other users, it is impossible for it to calculate
the NE in one shot. In the context of a single-relay network [4],



we have shown that distributed best response updates can globally
converge to the unique NE (if it exists) in asynchronousmanner,
i.e., all users update their bids in each time slot simultaneously ac-

cordingly tobi (t) = f s
i (π)

(

∑

l 6=i bl (t− 1) + β
)

. In practice,

however, it would be difficult or even undesirable to coordinate all
users to update their bids at the same time, and the followingcan
be used:

Algorithm 1 Asynchronous Best Response Bid Updates
1: t = 0.
2: Each useri randomly chooses abi (0) ∈

[

bi, b̄i
]

.
3: t = t+ 1.
4: for each useri ∈ I
5: if t ∈ Ti then

6: bi,k (t) =
[

f s
i (π)

(

∑

l 6=i bl (t− 1) + β
)]b̄i,k

b
i,k

, ∀k.

7: end if
8: end for
9: Go to Step 3.

We show thatasynchronousbest response updates converges
in the multiple-relaycase. The complete asynchronous best re-
sponse update algorithm is given in Algorithm 1 ([x]ba = max
{min {x, b} , a}.), where each useri updates its bid only if the
current time slot belongs to a setTi, which is an unbounded set of
time slots and could be different from user to user. We make a very
mild assumption that the asynchronism of the updates is bounded,
i.e., there exists a finite but sufficiently large positive constantB,
and for allt1 ∈ Ti, there exists at2 ∈ Ti such thatt2 − t1 ≤ B.
Each user updates its bid at least once during any time interval of
lengthB slots. The exact value ofB is not important (as long as it
is bounded) for the convergence proof and needs not to be known
by the users.

Theorem 5 If there exists a unique nonzero NE in the SNR auc-
tion, there always exists a lowerbound bid vectorb =

(

b̄i, ∀i ∈ I
)

and an upperbound bid vector̄b = (bi, ∀i ∈ I), under which Al-
gorithm 1 globally converges to the unique NE.

In practice, we can chooseb to be a sufficiently small posi-
tive vector (to approximate zero bids from users) andb̄ to be a
sufficiently large finite vector.

4. SIMULATION RESULTS
For illustration purpose, we show the convergence of Algorithm 1
in a multiple-relay SNR auction. We consider a network with three
users and two relays. The three transmitters are located at (100m,-
25m), (-100m,25m) and (100m,5m), and the three receivers are
located at (-100m,25m), (100m,25m) and (-100m,5m). The two
relays are located at (0m,-2m) and (0m,0m). All the priorityco-
efficientsqik = 1. Since the first relay announces a price lower
than the second relay, all users choose to use the first relay.In
Fig. 2.a, we show the convergence of the users’ bids to the first re-
lay under synchronous updates, where each user updates its bid in
each time slot. The solid lines show the evolution of the bidsand
the dotted lines show the optimal values of the bids after conver-
gence. In Fig. 2.b, we show the convergence under the same setup
with asynchronous convergence. Three users randomly and inde-
pendently choose to update their own bids in each time slot with

(a) Synchronous Updates (b) Asynchrony Updates

Fig. 2. Bids update in an SNR auction (the same one relay).

probability0.1, 0.5 and1, respectively. We can see that the al-
gorithm converges to the same optimal values as the synchronous
update case but in longer time (as expected).

5. CONCLUSIONS
In this paper, a cooperative communication network with multiple
relays has been considered, and two auction mechanisms, theSNR
auction and the power auction, have been proposed to distribu-
tively coordinate the relay power allocation among users. Unlike
the single-relay case studied in [4], here the users’ choices of re-
lays depend on the prices announced by all relays. In the SNR
auction, a user will choose the relay with the lowest weighted
price. In the power auction, a user might use multiple relayssi-
multaneously, depending on the network topology and the relative
relationship among the relays’ prices. A sufficient condition is
shown for the existence of the Nash equilibrium in both auctions,
and conditions are derived for uniqueness in the SNR auction. The
fairness of the SNR auction and the efficiency of the power auction
are also discussed. Finally, if an NE exists, users can achieve it in
a distributed fashion via best response updates in an asynchronous
manner.
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