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ABSTRACT

In recent work, Kalman Filtered Compressed Sensing (KFyZ)
proposed to causally reconstruct time sequences of spgrsass
from a limited number of “incoherent” measurements. In thisk,
we develop the KF-CS idea for causal reconstruction of nadtic-
age sequences from MR data. This is the first real applicatfon
KF-CS and is considerably more difficult than simulationadr
a number of reasons, for example, the measurement matriMRor
is not as “incoherent” and the images are only compressiié (
sparse). Greatly improved reconstruction results (as eoetjto CS
and its recent modifications) on reconstructing cardiactaah im-
age sequences from dynamic MR data are shown.

Index Terms/Keywords: Compressed Sensing, Kalman Fil-
tered Compressed Sensing, dynamic MRI

1. INTRODUCTION

In recent work [1], the problem of causally reconstructiimget se-
quences of spatially sparse signals, with unknown and sioe-t
varying sparsity patterns, from a limited number of lineiacbher-
ent” measurements was studied and a solution called Kalrmian F
tered Compressed Sensing (KF-CS) was proposed. An impestan
ample of this type of problems is real-time medical imagaisege
reconstruction using MR, for e.g. dynamic MRI to image tleat
ing heart or functional MRI to image the brain’s neuronap@ses
to changing stimuli(see Fig.1). In these examples, thessigneart or
brain image) is approximately sparse (compressible) imtieelet
transform domain [2],[3]. MRI measures the 2D Fourier tfama

of the image which is known to be “incoherent” w.r.t. the wate
basis [2]. Because MR data acquisition is sequential, tha 8me
(time to get enough data to accurately reconstruct one frése-
duced if fewer measurements are needed for accurate reaciitst
and hence there has been a lot of interest in the MRI commtmity
use compressed sensing (CS) to do this [2],[3].
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(a) A brain image sequence

(b) MSE plot
Fig. 1. The three rows of Fig.1(a) show some frames of a brain
image sequence(row 1), its MRI reconstructions using KF-Q%
2), and using CS(row 3). Fig.1(b) is the corresponding MSi. pl
n = 2049, m = 4096 ando?2,, = 100.

differences in our current problem from the simplistic magsed in
[1] and these require some practical modifications to therélgn
of KF-CS(described in section 2). Additionally, in this wofi) we
develop a method for estimating the prior model parameters f
training data(described in section 3.1) and (ii) we use ésailts of
[7] to develop a method for selecting the number of obsernati
required and the parameters used by the CS step of KF-C Sifpc
in section 3.2). Results on reconstructing a cardiac seguand
a brain sequence are discussed in section 4 and they shotlygrea
reduced mean squared error(MSE) when compared to perfgrmin
CS at each time as in [2], as well as to some other modificathbns
CS. For e.g. in Fig 1b, the CS error is more twice that of KF-CS.

1.1. Problem Formulation
Let (Z¢)m, xm, denote the image at timeand letm := mima

be its dimension. LetX; denote the 2D discrete wavelet trans-
form (DWT) of Z;, i.e. X; := WZ,W'. Let F denote the dis-
crete Fourier transform (DFT) matrix ands,,;: = FZ.F’

This idea is first demonstrated in [2] for a single MR image or 17/ X, W' F’ denote the 2D-DFT ofZ;. All of this can be trans-

volume. The work of [3] extended the idea to offline dynamic MR
reconstruction, i.e. it used the entire time sequence obuareaents
to jointly estimate the entire image sequence (treatedat3 x-y-

t signal, sparse in wavelet domain along the x-y axis andsspiar
the Fourier domain along the time axis). But this is a batdhtiEm
(needs all measurements first) and also the resulting jpiina@a-
tion is computationally complex. On the other hand, the tsamu

formed to a 1D problem by using Kronecker product denote®hy
Let Yfull,t = vec(qu”_yt) andz; := vec(Xt). Thenyfu”,t =
FipWipz, whereFip = FQ F andWip = W Q W. Here,
vec(X¢) denotes the vectorization of the matfix formed by stack-
ing the columns ofX; into a single column vector. In MR imaging,
we capture a set af, (n < m), Fourier coefficients corrupted by
white noise. This can be modeled by applying & m mask, M

of [1] is causal and also much faster, and thus can be usedke ma(which contains a single 1 at a different location in each am all

dynamic MRI real-time. Reduced scan-time and real-tim@mec
struction are the currently missing abilities that prevergt use of
MRI in interventional radiology applications, such as MRided
surgery[4]. Some other recent work that also targets caesah-
struction of sparse image sequences is [5] and [6].

In this work we use [1] to develop a KF-CS algorithm to caysall

other entries are zero) .1+ followed by adding Gaussian noise.
The above can be rewritten using the notation of [1] as
yr = Axe +wi, A:= H®, H := MFip,® := Wip 9)

with wy ~ N(0,02,,) is i.i.d. Gaussian measurement noise. Let

reconstruct image sequences using MR data. There are sogme k& denote the current set of nonzero coefficients (or signifigan



Algorithm 1 Kalman Filtered Compressive Sensing for compressibless-$parse signal

Initialization: Att = 0, computer™ = argmin. 3 ||y — Az||i +7||z|[11,7 = Yes = 2¢/2l0ogy moers, To = {i € [1:m] : [z*]; > cinit }-
SetPy =100 Q, 20 =0
Fort > 0, do

1. Temporary KF using” « T;_1:

(Pyt—1)rr = (Pe—1)rr + (Q)7,1 1)
K tmpr = (025 (Pyjo—1) 7 + ApAr) " Ap #)
(Zt,emp)T = (Zt—1)T + Kt tmp, 7 (e — Ar(Ti—1)71), (Tt,6mp)Te =0 3)

2. Run CS on KF error to update nonzero set(Addition/Deletion)

(a) Compute the filtering errof, ; = y: — A&+ tmp, run CS onj; 5, i.e. estimates = argming 5 ||ye,s — AB||& + |8l with
v = YERC. S€t¥.csrE = Tt tmp + 5.
(b) Addition/Deletion: estimate the nonzero setas:T. = {i € [1 : m] : |Z¢,csreli > Qadd} Tt — Te.

3. Run KF on the current nonzero Sét

(Ztjp—1)Te = ( Ito; ;‘F;;C\ZQTC> s (Zje—1)Te =0 4
(P,

(Pyt—1)1e1. = { -tiem)TOTL T (PO)TC\T,TC\T:| + (@11 ()

Kir = (02(Pae-1)1 1, + Az, Ar.) ' A, (6)

(P)rer. = (I = KerAr, ) (Pyje—1) 10,10 (7

(jt\t) (jt\t 1. + Kerlye — A(xt\tfl)TcL (jt\t)%c =0 (8)

4. Outputly, #+ and#¢,csre. Compute signal estimatiofi = Wip4: or 2t,.csre = Windt,csFE-

nonzero coefficients in case of compressible sequences)zHay, that got falsely added in the past or that became zero overdim
we assume a spatially independent (but not identicallyidiged)  removed fronil; by thresholding the KF outpuit;.
Gaussian random walk model, i.e. Let A := N;\ T:—1. The reason why KF-CS for sparse signals
outperforms CS is that CS usgs = Ax: + w: to estimate the
Ty = Tp—1 + v, v ~ N(0,Qr), |T:—1UA¢|-sparse signak;;, while KF-CS useg;, ; = y: — Ads =
Q) nev, = (Q)n,.Ne AB + wi to estimate3; £ z, — Zt.tmp. AS explained in [1]5; =
(@)ne.fnt = 0. (@)png v =0 (10) [ =)y (n)a,Ocry e S alsolTis U |-sparse bu

is only |A,|-compressible (assumin@: — Z¢,tmp)7, _, 1S Small).

Key Differences. KF-CS was designed for estimating a highly
sparse signal sequence, with slowly changing nonzero elfsieet,
from a small number of random Gaussian projections corcujste
Gaussian noise. All nonzero coefficients at a given time vesre
sumed to follow a random walk with equal variance. In the MRI
reconstruction problem, there are a few key differences.

1. The matrix,A = H® is no longer random Gaussiad.is the
2. KF-CS FOR REAL-TIME DYNAMIC MRI DWT matrix andH contains randomly selected rows from
the DFT matrix. The resultingl matrix is not as incoherent
(incoherence can be quantified by= max,.; |A;A;|) as a
random Gaussian matrix of the same size.

2. The wavelet transform coefficients’ vectos, of a real med-
ical image (e.g. cardiac or brain) is only compressible (not
sparse) and the numbet;, of “significantly” nonzero coeffi-
cients, (as a percentage of the signal sizgjs much larger
than what was used in the simulations in [1].

where(Q is a diagonal matrix estimated as explained in section 3.1
The diagonal assumption af is a valid one because the wavelet
transform is well-known to be a decorrelating transformratural
images [8]. The set)V; of (significantly) nonzero elements af
changes slowly over time, for e.g. for32 x 32 block of a cardiac
image,|N¢| ~ 130 and|N; \ N¢—1| < 20.

The overall idea of Kalman Filtered Compressed Sensing Q-
for a sparse signal sequence is as follows [2]. Letlenote the KF-
CS estimated set of (significantly) nonzero coefficientineet, i.e.

T, = N,. At t = 0, we perform CS omy, followed by thresholding,
to estimatel},. At anyt, we first run a reduced order KF for the ele-
ments of7;_;. Denote its output by:; ;. We use this to compute
the filtering error in the observation:, ¢ := y: — AZ¢ . tmp. If Ge ¢

is larger than usual (its weighted norm is greater than aktwid), it

indicates that more coefficients have become nonzero. Atithie, 3. Different wavelet coefficients have different varianaes in
we perform CS onj;, ; followed by thresholding the output to find fact the nonzero coefficients that get added/deleted aver ti
new additions td%_,. This is followed by a KF prediction and up- are typically the smaller variance ones.

date step for the current set of nonzero coefficiehits Coefficients 4. The problem dimensiomy is much larger (e.gm = 4096).



Modifications. We describe below our modifications to addressAlgorithm 2 @ estimation

the above issues. The final algorithm is summarized in Algoril.

Use of Lasso. Because of 1 and 2, the Dantzig selector, which

was designed for very sparse signals, estimated from higbbher-
ent observations does not work well. We replace it by the . ésse
step 2a of Algorithm 1), which was also used in [2].

Dealing with false additions and misses.Even with Lasso,
because of 3, either many of the (significantly) nonzerofwments
never get added t@3, i.e. 7; \ N: is large or there are too many

false additionsA = T; \ N:. In the latter case, the increase in

|T¢| may result in a singulad?, A7, (making the KF unobservable).
Because of 1, this begins to occur for smaller valugg'gf/n than if

A were random Gaussian (and of course occurs more often when

is smaller, e.g. when = 308 for a32 x 32 cardiac image sequence).
To prevent this, the addition/deletion threshald,;q, needs to
be large, but this results in larg&r = N \ ;. Note that the estima-
tion error alongl” = Ty, (x¢ — &)1, depends linearly oml’- Aa.
Because of larger sizefl and because of 4/ A is no longer very
small and thugz; — &+)7 is also not very small. By using the output
of the CS stepit.csre = #1,tmp + ¢, as the final output (instead

of using the KF outputg:), we ensure that at least the CS estimate
of (8¢)r is included in the final estimate. For the same reason, we

also use the:; csrg for deletion, in fact we combine addition and
deletion into a single step (see step 2b of Algorithm 1).

Initial covariance. Since there is an unknown delay in detecting

new additions to the nonzero coefficients’ set, the initiedlecovari-
ance of newly added coefficients is never correctly known. uaé
an arbitrarily large valuel, = 100Q for it (the estimate for the new
coefficients will thus be closer to an LS solution).

Efficient Implementation Whenm is large, a direct implemen-

tation of KF-CS becomes very slow. We make it faster usingesom

simple reformulations such as solving a 2D version of lasebus-
ing the algorithm of [2] or using standard matrix algebraksi to
speed up matrix multiplications and inversions in the Kipste

3. PARAMETER ESTIMATION

Section 3.1 discuss how we estim&eand section 3.2 discuss how
we select and~ using ERC.

3.1. EstimatingQ@

We consider two models fa@p. The first one assumégto be a diag-
onal matrix with different entries while the second assu@es di-
agonal with all equal entries. The second model will haveamas
(since finer scale wavelet coefficients always have smadgance
than coarser scale ones) but will have smaller variance enceghs a
better idea when limited training data is available. We campute
an approximate Maximum Likelihood (ML) estimate @funder ei-
ther model: we pick a zeroing threshold, set all coefficidgkow
it to zero and use the rest of the coefficients to compute theeSiL
timate. The algorithm is summarized in Algorithm [2;| in step 2

stands for the times of nonzero occurrenceifbrentry of z; and -6 -KF-CS (Qy)
. . . . . 0.012
|0;] = 0 implies theith entry,z: ;, is zero or equal at all time. [ el -+ KF-CS Q)
0.01 ~a-15-CS(Q))
i i > -<-CS
3.2. Selecting, and ~ using ERC . Boces BN
The lasso estimator is defined as the solution to : | -+ -GAKF Ll
1 £ 0006 %"i>9\>[’Ei*’[’fﬁ%i—’[*’[)ﬁ>;>DD[+[>F>‘>E>[;A’[)1>L>DD o
. 2 Y A A
arg min [lye — Azellia + v||ze] 2 (11) 0004 éAL\MAMAMAA
ot 0.002 %&aa« R R L
where~ is a regularization parameter that determines the tradeoff e

between the data consistency and the sparsity. We use Thebre

of [7] to develop an algorithm to selegtandn using training data.

1. Zero out “compressible”(nearly zero) coefficients

(a) Select zeroing threshold
e Fort = 1 : Lirqin, here, Liyqin denotes the
length of training sequence,

— Computex; = W{th. Arrange|z:,;| in
decreasing order of magnitude, ja8,:| >
|ﬂ7t,2| > > |$t,m|-

— Compute the smallestS: such that
Yi<s rei* > 99.9%x,x:, set thresh-
old ap = |It,Sg|-

e Averagea; overt, o = thti
(b) Zero out “compressible” coefficients
e Fort = 1 : Ltrain, If |244] < «, setxe; = 0.
SetNy = {i € [1:m] : |ze | > al.
2. Estimate? using nonzero coefficients. Compuie:= {¢ :
Ttg — Tt—1,i 7’é 0}
e ForQ with different diagonal values,
i Lirain
—H 18] > 1 (030 = e (e —
wtfl,i)2-
— if [6:] = 0, (03y)s = 0.9min 5,101 Toys.s
— SetQaisf = diag((afys)i).
e For @ with equal diagonal values,
— Compute (02,5)i
L rain
Ej(\léj\)Eje{j“5j||21}2t:t2 (Tei — we-14)”.
SetQsame = diag(((fgys)i).

recovery coefficient? RC/(A) := 1—||A} Ax<||n > 0is one of the
conditions for Theorem 8 to hold. Herdenotes pseudoinverse.

Selectingn: Giveny, and the ground truth date.. Threshold
x: to define its nonzero seé¥;. Find the smallest value of such
that ERC(N¢ \ N¢—1) > 0 for at least 90% of times.

Selectingy: Theorem 8 of [7] guarantees that+f is large
enough (its correlation condition is satisfied), the lastmeator will
have no falsely nonzero coefficients, but may end up not gditie
small coefficients. For sufficiently sparse signal sequgnaee can
use the correlation condition given in this result to findtfi@imum
value of~ required for a given training sequence. This can be done

0.014

time

Fig. 2. Comparison of KF-CS with different model @@. n

Let A be the nonzero set of, which we want to estimate. The exact 308,m = 1024 ando?,, = 25. Qo denotes) = oo.
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Fig. 3. Fig3(a) is MSE/energy plot for sparsified cardiac imagaisege usingy obtained from ERC-based method and= ~.s. Fig3(b)
is plots of |T; \ N:|(No. of false coefficient) andV; \ 7:| (No. of missing coefficients)for data in Fig 3(a) usifng= yerc. Fig 3(c) is

MSE/energy plot for true cardiac image sequence witk 2 < ygrc. Fig 3(d) is MSE/energy plot for true cardiac image sequenitie
v = 0.005 << vERC

=25

as follows. Starting withl;, = Np, do the following fort = 1 to
Lirain: (@) computeA; = N; \ T;_1; (b) computeE RC(A;); and

while usezcsr g as final output.

5. CONCLUSIONS AND FUTURE WORK

In this paper, we have developed the KF-CS idea for causal re-

construction of medical image sequences from MR data and hav

shown greatly improved reconstruction results on cardia@ohic

and brain fMRI data, as compared to CS [2] and its modification

This is the first real application of KF-CS and is consideyahbre

difficult than simulation data because the measurementifatr

MR is not as incoherent as a random Gaussian matrix and kecaus
4. EXPERIMENT RESULTS the different wavelet coefficients have vastly differentgmitudes

We evaluated our algorithm on cardiac and a brain image segee ~ and variances. Future work will involve a rigorous analysfishe

Fig. 1 is the comparison of KF-CS reconstructed image semuen proposed algorithmic ideas and using it to propose a noveCiSF

with that of CS for brain data. Notice the white region in tlemier ~ based algorithm for compressible sequences.

is much more blurred in CS reconstruction than in KFCS. Fer th

results of Fig 2 and 3, we first selectedZx 32 region in the image,

used this sequence as the test data. MRI was simulated mgtaki

the 2D-DFT of the given image sequence, selecting a randém s¢1] N. Vaswani, “Kalman filtered compressed sensing,” IBEE

of n Fourier coefficients using the variable-density undemgling Intl. Conf. Image Proc. (ICIP)2008.

scheme proposed in [2] and adding i.i.d. Gaussian noisesta.ttn ~ [2] M. Lustig, D. Donoho, and J. M. Pauly, “Sparse mri: The lapp

the plots of Fig 2, 3, we plot MSE/energy: ||z: — &% /|7 |7 cation of compressed sensing for rapid mr imagingAgnetic

which was computed by averaging over 50 Monte Carlo siniiati Resonance in Medicineol. 58(6), pp. 1182-1195, December

for cardiac sequence. Fig. 2 compares KF-CS u§ag s, Qsame 2007. )

and usingQ = oo (replacing KF by LS)n = 308 observations U. Gamper, P. Boesiger, and S. Kozerke, “Compressedragns

were taken whilg N;| ~ 130 and|A,| < 20. Sincec?, is large, in dynamic mri,” Magnetic Resonance in Medicineol. 59(2),

KF-CS which makes use of prior model knowledge performs mucrh] pp. 365-373, January 2008.

better than LS-CS. Also, KF-CS witQ,; ; ; outperforms KFCS with A.J. Martin, O. M. Weber, D. Saloner, R. Higashida, M. 8dh,
M. Saeed, and C.B. Higgins, “Application of MR Technology to

Ge,r—An, AN, 5e 7

(c) run step 2 of Algorithm 1 withy = ~; = FROAL)

Useverc = max: y: for test data.

In practice, for compressible data, usifg= vrrc adds too
few coefficients. In this case we compute rc using a sparsified
version of the true training sequence, but use a smalleeathy for
the test data. This allows more coefficient additions.
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