
HAL Id: hal-00398829
https://hal.science/hal-00398829

Submitted on 25 Jun 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Exploiting statically schedulable regions in dataflow
programs

Ruirui Gu, Jörn W. Janneck, Mickaël Raulet, Shuvra S. Bhattacharyya

To cite this version:
Ruirui Gu, Jörn W. Janneck, Mickaël Raulet, Shuvra S. Bhattacharyya. Exploiting statically schedu-
lable regions in dataflow programs. International Conference on Acoustics, Speech, and Signal Pro-
cessing, 2009, Taiwan. pp.565–568. �hal-00398829�

https://hal.science/hal-00398829
https://hal.archives-ouvertes.fr

EXPLOITING STATICALLY SCHEDULABLE REGIONS IN DATAFLOW PROGRAMS

Ruirui Gu, Jorn W. Janneck, Mickael Raulet, Shuvra S. Bhattacharyya

Department of Electrical and Computer Engineering, University of Maryland
College Park, MD, 20742, USA, Email: rgu, ssb@umd.edu

Xilinx, Inc. San Jose, CA, USA, Email: jorn.janneck@xilinx.com
IETR Laboratory, UMR CNRS 6164, Image and Remote Sensing Group,

35043 RENNES Cedex, FRANCE, Email: mraulet@insa-rennes.fr

ABSTRACT

Dataflow descriptions have been used in a wide range of Digi-

tal Signal Processing (DSP) applications, such as multi-media

processing, and wireless communications. Among various

forms of dataflow modeling, Synchronous Dataflow (SDF)

is geared towards static scheduling of computational mod-

ules, which improves system performance and predictabil-

ity. However, many DSP applications do not fully conform

to the restrictions of SDF modeling. More general dataflow

models, such as CAL [1], have been developed to describe

dynamically-structured DSP applications. Such generalized

models can express dynamically changing functionality, but

lose the powerful static scheduling capabilities provided by

SDF. This paper focuses on detection of SDF-like regions in

dynamic dataflow descriptions — in particular, in the gener-

alized specification framework of CAL. This is an important

step for applying static scheduling techniques within a dy-

namic dataflow framework. Our techniques combine the ad-

vantages of different dataflow languages and tools, including

CAL [1], DIF [2] and CAL2C [3]. The techniques are demon-

strated on the IDCT module of MPEG Reconfigurable Video

Coding (RVC).

Index Terms— CAL, dataflow, quasi-static scheduling.

1. INTRODUCTION

Dataflow-based programming is employed in a wide variety

of commercial and research-oriented tools related to DSP sys-

tem design. Synchronous dataflow (SDF) is a specialized

form of dataflow that is streamlined for efficient representa-

tion of DSP systems [4]. SDF is a restricted model that han-

dles a limited sub-class of DSP applications, but in exchange

for this limited expressive power, SDF provides increased po-

tential for static (compile-time) optimization of DSP hard-

ware and software (e.g., see [5]).

Since the introduction of SDF, a variety of more general

dataflow models of computation have been proposed to han-

dle broader classes of DSP applications. These alternative

modeling approaches provide different trade-offs among ex-

pressive power, optimization potential, and intuitive appeal.

In general, they provide enhanced expressive power, but can-

not directly utilize statically scheduling techniques, as in SDF.

In the context of DSP system design, dataflow programs

consist of computational kernels, called actors. Actors are

connected to each other by FIFO channels, called edges,

through which they send each other packets of data, called

tokens. Actors execute iteratively through discrete units of

execution called firings or invocations. An important task

when mapping dataflow graphs into implementations is that

of sequencing and coordinating among actors based on the re-

source constraints of the target platform. This task is referred

to as scheduling.

A variety of dataflow-based languages and tools have

been developed. For example, CAL [1] is a language for

specifying dataflow actors in a way that is fully general (in

terms of expressive power), while clearly exposing functional

structures that are useful in detecting important special cases

of actor behaviors (e.g., SDF or SDF-like actor behaviors).

The semantics that underlies the CAL language bears some

similarity to the stream-based functions model of computa-

tion [6]. DIF [2] is a language for specifying dataflow graphs

in terms of subsystems that conform to different kinds of spe-

cialized dataflow modeling techniques, and The DIF Package

(TDP) is a tool for analyzing DIF language specifications,

with emphasis on scheduling- and memory-management-

related analysis techniques [2]. CAL2C [3] is a tool that

performs automatic generation of C code from CAL net-

works, thereby providing a direct bridge between CAL and

off-the-shelf embedded processing platforms.

In this paper, we explore an integration of CAL, TDP, and

CAL2C to provide novel methods for quasi-static scheduling
of dynamic dataflow graphs. Here, by quasi-static schedul-

ing, we mean scheduling techniques in which a significant

proportion of scheduling decisions are fixed at compile time

— thereby promoting predictability and optimization.

More specifically, in this paper we introduce the concept

of a Statically Schedulable Region (SSR) in a dataflow graph,

565978-1-4244-2354-5/09/$25.00 ©2009 IEEE ICASSP 2009

and demonstrate the utility of this concept in quasi-static

scheduling. We also propose an automated method to de-

tect SSRs, using the TDP tool, in DSP applications that are

modeled by CAL language. The efficiency of quasi-static

schedules built from SSRs is demonstrated by evaluating

synthesized C-code implementations that are generated using

CAL2C.

2. ANALYSIS FRAMEWORK

Our method to optimize implementation of DSP applications

combines the advantages of three complementary tools, as

shown in Figure 1. The given DSP application is initially

described as a CAL network (a highly expressive form of

dataflow graph) that is composed of CAL actors. The CAL-

based dataflow representation is then translated into a DIF-

based intermediate representation for analysis by TDP. This

TDP-driven analysis produces a set of SSRs, and an associ-

ated quasi-static schedule, which is then translated into a re-

formulated CAL specification. This transformed CAL code

is then translated to a C code implementation using CAL2C.

The generated CAL2C implementation is optimized to exploit

the static structured provided by the SSRs and their enclosing

quasi-static schedule.

Fig. 1. Outline of method for optimizing dataflow graph im-

plementation.

A CAL actor can in general have two kinds of interfaces

— input ports and output ports. A CAL actor performs com-

putations in sequences of steps, where each step is called an

action. There are one or more actions associated with a given

actor, and an invocation of an actor corresponds to exactly one

action. In each action, the actor may consume tokens from its

input ports, and may produce tokens on its output ports. Also,

there can be one or more state variables associated with an

actor, and these state variables can be modified by any action.

We introduce some notation to allow for more detailed

discussion of CAL semantics. For simplicity, we assume here

that there is exactly one state variable associated with a given

CAL actor, but this is not a general restriction of the CAL

language — CAL actors can have no state variables or mul-

tiple state variables. A CAL actor A can be represented as a

4-tuple < σ0,Σ(A),Γ(A),�>, where Σ(A) is the set of all

possible values for the state variable; σ0 ∈ Σ(A) is the initial

state; Γ(A) is the set of all possible actions for actor A; and �
is a non-reflexive, anti-symmetric and transitive partial order

relation on Γ(A) called the priority relation of A. Intuitively,

if l,m ∈ Γ(A), then l � m means that l has priority over m
if both are “competing” for the next invocation A.

We refer to the set of ports in A as the port set of A, de-

noted as ports(A). For a given action l ∈ Γ(A), the set of

ports that can be affected by the action is denoted (allowing

a minor abuse of notation) by ports(A)l. In CAL, different

actors can have identically-named ports. To distinguish be-

tween identically-named ports in different actors, we prefix

the name of the port with the containing actor, as in A.a and

B.a. Given a CAL actor A, inputs(A) denotes the set of

input ports of A, and outputs(A) denotes the set of output

ports of A. Furthermore, given an action l ∈ Γ(A), we again

employ a minor abuse of notation, and define inputs(A)l =
inputs(A) ∩ ports(A)l, and outputs(A)l = outputs(A) ∩
ports(A)l. These represent, respectively, the sets of actor in-

put and output ports that appear in the action l.
Given a dataflow graph G consisting of CAL actors, one

can construct a port connectivity graph (PCG) P = (V,E),
where V , the vertex set of the graph, is the set of all ports

of all actors in G, and E is formed from all ordered pairs of

ports (A.a, B.b) such that there is an edge in G representing

a connection from port A.a to port B.b. When discussing a

graphical representation of a CAL network, we assume that

the representation is in the form of a PCG, unless otherwise

stated.

A guard is a condition that must be satisfied before the

next action in a CAL actor can proceed to execute. In general,

a guard condition can involve the actor inputs and actor state.

If execution of an action has an associated guard condition,

we say that the action is guarded. Intuitively, an action that is

not guarded executes unconditionally as soon as it is the next

action visited during the execution of the enclosing actor A.

Also, we say that an action is a state-modifying action if the

action may, depending on the current state and actor inputs,

change the value of the actor state. Given a guarded action

m of an actor A, we say that m is state-guarded if the guard

condition associated with m depends on the value of the state

variable associated with A.

Describing an actor in CAL involves describing not only

its ports, but also the structure of its internal state, the actions

it can perform, what these actions do (such as token produc-

tion and token consumption, and updating of actor state), and

how to determine the action that the actor will perform next.

3. STATICALLY SCHEDULABLE REGIONS

As a core step of our proposed design flow, we identify cer-

tain groups of related ports in the PCG that is derived from a

given CAL program. Intuitively, these groups are to be treated

as single units during subsequent stages of analysis, similar to

how graph clustering techniques are used to group sections of

566

a graph for isolated analysis. Our particular method of group-

ing is driven by the goal of constructing efficient quasi-static

schedules. Our grouping process operates in two phases: in

phase 1, we group ports within individual actors, and in phase

2, we group ports across distinct actors.

In phase 1, we apply a concept that we refer to as coupled
ports, which is based on the observation that within a given

actor A, two ports a and b can be related to one another in

zero, one or both of the following two ways:

1. ∃(l ∈ Γ(A)) such that a, b ∈ ports(A)l;

2. ∃l,m ∈ Γ(A) such that a ∈ ports(A)l, b ∈ ports(A)m,

l is a state-changing action, and m is a state-guarded

action.

If ports a and b satisfy one or both of these relationships,

we say that the two ports are coupled to one other.

Our process of grouping ports in a PCG starts by ex-

amining the PCG subgraph associated with each actor A,

and building a set of coupled regions of ports within the

subgraph. This grouping process follows a simple iterative

scheme where a given group g is incrementally extended by

testing all ports in A that have not yet been grouped (external

ports) to find an external port that is coupled to at least one

port inside g. By following this scheme, we eventually arrive

at a partition of the ports within an actor into a set of one or

more coupled groups.

Once we have partitioned the ports of each actor A into

its set C of coupled groups, we examine each coupled group

c ∈ C, and we try to extract from c a more specialized kind

of port-subset called a statically-related group (SRG). In par-

ticular, a set of ports Z = {p1, p2, . . . , pn} within a given

coupled group of A is a statically-related group if it satisfies

the following three conditions.

1. ∀l ∈ Γ(A), either Z ⊆ ports(A)l, or Z
⋂

ports(A)l =
∅, where ∅ denotes the empty set.

2. For each input port pi ∈ Z, there exists a fixed positive

integer cns(pi) that characterizes the number of tokens

consumed from pi. In other words, for any l such that

pi ∈ ports(A)l, we have that exactly cns(pi) tokens

are consumed from pi during l.

3. Similarly, for each output port pj ∈ Z, there ex-

ists a fixed positive integer prd(pj) that characterizes

the number of tokens produced onto pj , regardless of

which “containing action” is being executed.

In general, when applying SRG detection to a coupled

group c containing x ports, we will arrive at an SRG with

y ports, where 0 ≤ y ≤ x. The remaining (x − y) ports in

c (i.e., the ports that lie outside the SRG), are referred to as

dynamic ports of c.

In phase 2 of our overall port-grouping process, we clus-

ter connected SRGs across distinct actors to form statically

schedulable regions (SSRs). We define connectedness for

SRGs as follows. Suppose that G is a PCG, A and B are

distinct actors in G, Za is a non-empty SRG of A, and Zb is a

non-empty SRG of B. Then Za and Zb are connected if there

exists an edge (pa, pb) in the PCG G such that pa ∈ Za and

pb ∈ Zb.

Intuitively, two SRGs are connected if there is at least one

PCG edge that connects ports across the two SRGs.

In phase 2 of our port-grouping process, we incrementally

cluster connected subsets of SRGs by iteratively adding a new

SRG to an existing connected subset S whenever Zn from

outside of S is found such that Zn is connected to at least

one SRG in S. Using this kind of process, a unique set of

maximal connected subsets of SRGs emerges; such a maximal

connected subset is precisely what we mean by an SSR.

A practical example of grouping into SSRs is shown in

Figure 2. This example is part of a variable polyphase video

scaler that has been modeled fully in CAL. The shaded re-

gions shown in the figure correspond to the different SSRs,

which are unique to the application, and detected systemati-

cally using the two-phase, port-grouping process that we have

outlined above.

Fig. 2. Example of SSR regions in multi-media processing.

4. CASE STUDY: IDCT

The MPEG4 RVC framework aims at providing a new, inter-

operable model of defining MPEG standards at the system-

level [7]. C code for an MPEG RVC decoder can be generated

automatically in CAL2C. However, CAL2C utilizes schedul-

ing mechanisms that are embedded in SystemC, which are not

optimized in terms of static or quasi-static scheduling.

The IDCT is one key element in the block diagram of an

RVC decoder. In the original C code generated by CAL2C,

each actor has an action scheduler, which schedules the ac-

tions through a control structure that is similar to a finite state

machine. The action to be executed in the next step (invoca-

tion) is determined in real-time by outputs from the previous

step, and the current input to the actor.

In our experiments, we first translated the CAL network

for the IDCT subsystem into a DIF-based intermediate rep-

resentation in TDP. This translation was performed through

a conversion tool that we have developed for automatically

translating from CAL to TDP. We then applied our algorithm

567

for SSR detection, which we have implemented within TDP.

The output of SSR detection, along with a static schedule for

each detected SSR, is then translated back to CAL, thereby

achieving a source-to-source transformation of the original

CAL network through TDP.

Figure 3 illustrates SSRs within the IDCT subsystem.

Here, the main body of the IDCT is composed of the actors

row, tran, col, retran and clip. The dataGen and print actors

are used to complete a testbench for the network — dataGen
is responsible for generating input data, and print for dis-

playing the output from the IDCT computation. There are

two separate shaded regions in the graph, representing two

distinct SSRs.

Fig. 3. SSRs in the IDCT subsystem.

We generated C code for three different IDCT versions.

The first version (V1) does not employ any SSR analysis, and

can be viewed as being scheduled purely through SystemC.

The second version (V2) exploits the SSRs illustrated in Fig-

ure 3, and employs a quasi-static integration of static sched-

ules for these SSRs with top-level dynamic scheduling. The

third version (V3) uses a modified, more predictable version

of the clip actor that can be used when the input data is known

in advance. In V3, the entire IDCT is subsumed by a single

SSR, and therefore, purely static scheduling can be achieved.

We experimented with all three IDCT versions using Mi-

crosoft Visual Studio on a general purpose computer. While

these results provide a useful form of comparison — e.g., in

the context of dataflow-based system simulation — it would

be interesting to perform analogous experiments on a pro-

grammable digital signal processor platform. This is a useful

direction for further study.

Our experimental results are shown in Figure 4. Here, V2

shows an improvement in performance of 1.5 times compared

to V1, whereas V3 shows the best performance among all

three versions.

5. CONCLUSIONS

In this paper we have developed a methodology for quasi-

static scheduling of dynamic dataflow specifications in the

CAL language. Our approach is based on systematic con-

struction of statically schedulable regions, which are formally

and uniquely defined in terms of modeling concepts that un-

derlie CAL. Our approach is applied through a novel inte-

Fig. 4. Results: clock cycles vs number of iterations.

gration of three complementary dataflow tools — the CAL

parser, TDP, and CAL2C — and demonstrated on an IDCT

module from a reconfigurable video decoder application.

6. REFERENCES

[1] J. Eker and J. W. Janneck, “CAL language report, lan-

guage version 1.0 — document edition 1,” Electronics

Research Laboratory, University of California at Berke-

ley, Tech. Rep. UCB/ERL M03/48, December 2003.

[2] C. Hsu, M. Ko, and S. S. Bhattacharyya, “Software syn-

thesis from the dataflow interchange format,” in Proceed-
ings of the International Workshop on Software and Com-
pilers for Embedded Systems, Dallas, Texas, September

2005, pp. 37–49.

[3] M. Wipliez, G. Roquier, M. Raulet, J. Nezan, and O. De-

forges, “Code generation for the MPEG reconfigurable

video coding framework: From CAL actions to C func-

tions,” in Proceedings Multimedia and Expo, IEEE Inter-
national Conference, June 2008, pp. 1049–1052.

[4] E. A. Lee and D. G. Messerschmitt, “Synchronous

dataflow,” Proceedings of the IEEE, vol. 75, no. 9, pp.

1235–1245, September 1987.

[5] S. S. Bhattacharyya, R. Leupers, and P. Marwedel, “Soft-

ware synthesis and code generation for DSP,” IEEE
Transactions on Circuits and Systems — II: Analog and
Digital Signal Processing, vol. 47, no. 9, pp. 849–875,

September 2000.

[6] B. Kienhuis and E. F. Deprettere, “Modeling stream-

based applications using the SBF model of computation,”

Journal of VLSI Signal Processing Systems, vol. 34, no. 3,

July 2003.

[7] C. Lucarz, M. Mattavelli, J. Thomas-Kerr, and J. Jan-

neck, “Reconfigurable media coding: A new specification

model for multimedia coders,” in Proceedings of IEEE
Workshop on Signal Processing Systems, October 2007,

pp. 481–486.

568

