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Université Paris-Est
Institut Gaspard Monge, UMR CNRS 8049

77454 Marne-la-Vallée Cedex, France
e-mail:{nelly.pustelnik,caroline.chaux,jean-christophe.pesquet}@univ-paris-est.fr

ABSTRACT

Iterative optimization algorithms such as the forward-back-
ward and Douglas-Rachford algorithms have recently gained
much popularity since they provide efficient solutions to a
wide class of non-smooth convex minimization problems
arising in signal/image recovery. However, when images are
degraded by a convolution operator and a Poisson noise, a
particular attention must be paid to the associated minimiza-
tion problem. To solve it, we propose a new optimization
method which consists of two nested iterative steps. The
effectiveness of the proposed method is demonstrated via
numerical comparisons.

Index Terms— Deconvolution, iterative methods, Pois-
son distributions, optimization methods, wavelet transforms.

1. INTRODUCTION

In many application areas, image restoration plays a primary
role. When data are degraded by a convolutive blur and the
addition of Gaussian noise, a large panel of methods can be
used for restoration purposes. However, in real applications,
the nature of the encountered noise often differs from a Gaus-
sian one. For example, Poisson noise (which is dependent
on image intensity) is found in tomography, astronomy and
microscopy. This kind of noise may appear much more chal-
lenging to cope with. In this work, we consider the following
degradation model:

z = Pα(Ty) (1)

wherey is the original image degraded by a blur operatorT
and contaminated by a Poisson noise with scaling factorα.
The effect of the noise is denoted byPα.

The simplest way to take into account Poisson noise is to
process the data as if they were corrupted with Gaussian noise
and consequently, to apply standard restoration tools [1, 2].
A better approach consists of applying a pre-processing (also
called Variance Stabilizing Transform) on the data. For exam-
ple, the Anscombe transform [3] can be used to pre-process
Poisson data and then, to restore the transformed data as

if they were corrupted by Gaussian noise. Fryzlewicz and
Nason explored another stabilizing variance approach in [4]
named the Haar-Fisz transform. The main drawback of this
pre-processing lies in the fact that it uses the Haar decompo-
sition which is known to be especially efficient for blockwise
constant images. More recently, iterative algorithms based on
a variational approach were proposed in the Poisson denois-
ing context. In [5], Sardy et al. developed anℓ1-penalized
likelihood approach and more recently, in [6], the authors
used the Douglas-Rachford algorithm within a convex op-
timization framework. For deconvolution problems, algo-
rithms based on the minimization of the Kullback-Leibler
divergence were studied in [7]. An extension of this approach
was investigated in [8] to incorporate a total variation penal-
ity term. More recently, a block iterative method for binary
tomographic reconstruction based on convex contraint sets
was proposed in [9]. In [10, 11], the authors considered algo-
rithms mixing forward-backward [12] and Douglas-Rachford
steps. On the one hand, Dupé et al. [10] investigated an
elegant adaptation of the Anscombe approach. On the other
hand, a quadratic extension dealing with signal dependent
Gaussian noise was introduced in [11]. Note that a differ-
ent polynomial approximation of the objective function was
proposed in [13]. The objective of this paper is to adapt the
extension proposed in [11] in order to deal with Poisson dis-
tributions and, to investigate its properties. Notice thatthe
proposed method relies on a wavelet-like representation asin
some of the aforementioned approaches.

The paper is organized as follows: in Section 2, we for-
mulate the restoration problem from a frame representation
perspective. A Bayesian interpretation of the related convex
minimization problem is given. Then, we propose a quadratic
extension technique to circumvent the problem of the non
Lipschitz differentiability of the likelihood of the Poisson
data. In Section 3, we present the new algorithm combining
a forward-backward and a Dykstra’s step so as to restore
blurred images contaminated by Poisson noise. Finally, the
effectiveness of the proposed approach is demonstrated via
simulation results.



2. IMAGE DECONVOLUTION IN THE PRESENCE
OF POISSON NOISE

2.1. Problem statement

We consider the degradation model (1). An efficient proba-
bilistic prior model on the unknown imagey is adopted by
considering a frame representation of this image [12]. We
thus use a linear representation of the formy = F ∗x where
F ∗ : H → G is a tight frame synthesis operator withH =
R

K , G = R
N andK ≥ N . This means thatF ∗ ◦ F = νId

with ν ∈]0,+∞[. In this context, (1) can be reformulated
asz = Pα(TF ∗x) wherex is the unknown vector of frame
coefficients.

2.2. Bayesian framework

The imageu = Ty (resp. z) is viewed as a realization of

a nonnegative real-valued random vectorU = (U
(i)

)1≤i≤N

(resp.Z = (Z(i))1≤i≤N ). Conditionally toU = (u(i))1≤i≤N

∈ G, the random vectorZ is assumed to have independent
components with conditional probability:∀z(i) ∈ N,

P(Z(i) =z(i) | U
(i)

=u(i)) =
(αu(i))z(i)

z(i)!
exp(−αu(i)) (2)

whereα ∈]0,+∞[ is a scaling parameter.
We then assume that the vectorx of frame coefficients is

a realization of a random vectorX with independent compo-

nents and, each component
(

X
(k))

1≤k≤K
has a probability

density given by:∀x(k) ∈ R, p
X

(k)(x(k)) ∝ exp(−φk(x(k)))
whereφk is a finite convex function allowing us to model
frame coefficients. A large choice of potential functions
(φk)1≤k≤K is possible as shown in [12]. Under these as-
sumptions, it is readily shown that a MAP estimator of the
vector of frame coefficientsx can be obtained fromz by
solving:

min
x=(x(k))1≤k≤K∈H

K
X

k=1

φk(x(k)) − ln P(Z = z | U = TF
∗
x).

2.3. Link with convex optimization

One generic problem in convex optimization is to determine:

min
x∈C

f(x) + g(x) (3)

whereC is a closed convex subset ofH, f andg are functions
in Γ0(H). Γ0(H) denotes the class of lower semicontinuous
convex functions taking their values in]−∞,+∞].

In our restoration problem,g denotes the fidelity term re-
lated to the Poisson distribution of the noise andf the a priori
term onx. Thus,g is chosen as,∀x ∈ H, g(x) = Ψ(TF ∗x),
where

(

∀u =
(

u(i)
)

1≤i≤N
∈ G

)

Ψ(u) =

N
∑

i=1

ψi

(

u(i)
)

. (4)

From (2), it can be deduced that:∀υ ∈ R,

ψi(υ) =















αυ − z(i) + z(i) ln
(z(i)

αυ

)

if z(i) > 0 andυ > 0,

αυ if z(i) = 0 andυ ≥ 0,

+∞ otherwise.
(5)

Furthermore, the priorf is defined as:

(∀x =
(

x(k)
)

1≤k≤K
∈ R

K) f(x) =

K
∑

k=1

φk

(

x(k)
)

. (6)

Finally, as it is customary in image processing, a constraint
on the range of the pixel values is introduced by setting

C =
{

x ∈ H
∣

∣ F ∗x ∈ [0, 255]N
}

. (7)

2.4. Lipschitz differentiability issue

The functionsf andg as defined above are inΓ0(H) but an
additional assumption is often required to ensure the con-
vergence of optimization algorithms such as the modified
forward-backward algorithm in [11], namelyg should be
β-Lipschitz differentiable onC with β ∈]0,+∞[. Unfortu-
nately the assumption is not satisfied byg.
In [11], a quadratic extension was proposed so as to improve
convergence profiles. In the present case, we will show that
this technique can be adapted in order to obtain a lower ap-
proximation gθ of g, which is Lipschitz differentiable on
C. This function is defined as:gθ = Ψθ ◦ T ◦ F

∗, where
θ ∈ ]0,+∞[ andΨθ is given by

(

∀u =
(

u(i)
)

1≤i≤N
∈ G

)

Ψθ(u) =

N
∑

i=1

ψθ,i

(

u(i)
)

. (8)

The functions(ψθ,i)1≤i≤N are here defined as:∀υ ∈ R,
ψθ,i(υ) =















θ

2
υ2 + ζi,1(θ) υ + ζi,0(θ) if z(i) > 0 and−ǫ(θ) ≤ υ < υi(θ)

αυ if z(i) = 0 and−ǫ(θ) ≤ υ < 0

ψi(υ) otherwise,

whereυi(θ) = (z(i)/θ)1/2 is such that0 ≤ ψ′′
i (υ) ≤ θ ⇔

υ ≥ υi(θ), and the constantsζi,0(θ) andζi,1(θ) are chosen
so as to ensure the continuity ofψθ,i in υi(θ). The validity of
this approximation is secured by the following result:

Proposition 2.1 [14] Assume that

(i) ǫ is a decreasing positive function such that
limθ→+∞ ǫ(θ) = 0,

(ii) T [0, 255]N ⊂ [0,+∞[N ,

(iii) f is coercive orC is bounded,



(iv) f is strictly convex onC.

Then, there existsθ ∈ ]0,+∞[ such that, for everyθ ∈
[θ,+∞[, f + gθ has a unique minimizer on the convex set
C which is the minimizer off + g onC.

The proposed quadratic extension is illustrated in Fig. 1.
Whenθ becomes greater than some lower valueθ, the solu-
tion of the original minimization problem is perfectly found
asg is approximated bygθ. The choice ofθ will be discussed
in Section 4.
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Fig. 1. Quadratic approximation: Poisson likelihood (con-
tinuous line) and its extensions forθ = 0.3 (dashed line),
θ = 0.07 (dash-dot line) andθ = 0.01 (dotted line).

3. PROPOSED ALGORITHM

3.1. Optimization background

The approximated version of Problem (3) can be expressed
as:

min
x∈H

f(x) + gθ(x) + ιC(x) (9)

whereιC denotes the indicator function ofC, i.e., ∀x ∈ H,
ιC(x) = 0 if x ∈ C, +∞ otherwise. Among convex opti-
mization methods, the forward-backward algorithm appears
as an appropriate solution for minimizing (9) whenf is non
necessarily smooth. It is based on a useful tool called the
proximity operator. We recall that the proximity operator of
f ∈ Γ0(H) is proxf : H → H : x 7→ proxfx whereproxfx

is the unique minimizer off + 1
2‖.− x‖

2. This operator gen-
eralizes the notion of projection asproxιC

= PC wherePC

denotes the projection ontoC.

3.2. Forward-backward approach

Let x0 ∈ C be an initial image. The algorithm constructs a
sequence(xn)n≥1 by the iteration: for everyn ∈ N,

xn+1 = xn + λn

(

proxιC+γnf (xn − γn∇gθ(xn))− xn

)

whereγn ∈]0, 2(νθ‖T ‖2)−1[ is the algorithm step-size and
λn ∈]0, 1[ is a relaxation parameter. Under these conditions,

it is known that, if(∀n ∈ N) xn ∈ C, then(xn)n∈N converges
to a solution to Problem (9) [12, Theorem 5.4].

3.3. Dykstra’s algorithm

A main difficulty in the application of the forward-backward
algorithm is the determination ofproxιC+γnf [11]. To per-
form this task, we propose to use Dykstra’s algorithm [15].
Set r0 ∈ H andp0 = q0 = 0. Sequences(rm)m≥1 and
(sm)m≥1 are generated by the following routine:∀m ∈ N,

(sm, pm+1, rm+1, qm+1) = Df (rm, pm, qm)

⇔



















sm = PC(rm + pm)

pm+1 = rm + pm − sm

rm+1 = proxf (sm + qm)

qm+1 = sm + qm − rm+1.

Then (rm)m∈N and (sm)m∈N converge to the solution of
proxf+ιC

(r0) [15, Theorem 3.3].

3.4. Resulting algorithm

The proposed method consists of the following combination
of the two previous algorithms:

➀ Setx0 ∈ C andn = 0.
➁ Setrn,0 = xn − γn∇gθ(xn) andpn,0 = qn,0 = 0.
➂ Form = 0, . . . ,Mn

a) (sn,m, pn,m+1, rn,m+1, qn,m+1)
= Dγnf (rn,m, pn,m, qn,m)

b) If sn,m = sn,m−1, goto➃.

➃ Setxn+1 = xn + λn

(

sn,m − xn

)

.
➄ Incrementn (n← n+ 1) and goto➁.

The following result can then be deduced from the con-
vergence properties of the forward-backward and Dykstra’s
algorithms.

Proposition 3.1 Under Assumptions (ii) and (iii) of Proposi-
tion 2.1, there exists a sequence of positive integers(Mn)n∈N

such that, if(∀n ∈ N) Mn ≥ Mn then,(xn)n∈N converges
to a solution to Problem(9).

3.5. Remark

Other convex optimization algorithms can be envisaged to
solve Problem (9). On the one hand, it is possible to re-
place the Dykstra’s inner loop by iterations of the Douglas-
Rachford algorithm [6]. On the other hand, a minimization
strategy relying on the Douglas-Rachford algorithm can be
employed where an inner loop consists of iterations of the
forward-backward algorithm [12]. In our simulations how-
ever, it appeared that the algorithm we propose in this paper
is more effective in terms of convergence speed than these
two alternatives.



4. SIMULATION RESULTS

The objective of the presented experiment is to recover a
microscopy image from a degraded observationz gener-
ated according to Model (1). The degradation is obtained
by applying a5 × 5 positive uniform blur with‖T ‖ = 1.
To restore this image, a tight frame version of the dual-tree
transform (DTT) proposed in [16] (ν = 2) using Alkin and
Caglar 4-band filter bank has been employed. Strictly con-
vex non-differentiable potential functionsφk are chosen, of
the formωk| . |

pk + χk| . | where(ωk, χk) ∈ ]0,+∞[
2 and

pk ∈ {4/3, 3/2, 2}. We have used the algorithm proposed
in Section 3.4 withx0 = PCz (see (7) for the definition of
C) andγn = 0.995 θ−1. Visual results are shown in the
following figure.

Original Degraded,α = 0.1 Restored,θ = 0.1

In Table 1, we provide a quantitative comparison be-
tween the regularized Expectation-Maximization algorithm
proposed in [7], the Haar-Fisz transform [4], the Anscombe
approach in [10] and the proposed method for different values
of the quadratic extension parameterθ.

α 0.01 0.05 0.1 1

EM-Reg. [7] 10.7 13.0 14.1 17.8
Haar-Fisz - DTT [4] 8.69 13.1 14.8 18.2

Anscombe - DTT [10] 11.9 15.4 16.4 19.1
Quadratic θ = 0.001 13.6 15.6 16.3 0.00

extension DTT θ = 0.1 13.6 15.6 16.5 19.1

Table 1. SNR for the microscopy image. For quadratic ex-
tension method, iteration number<500 whenθ = 0.001 and
≃ 1000 whenθ = 0.1.

As mentioned in Section 2.4, a large value ofθ allows us
to improve the restoration performance (closer approximation
gθ of g), whereas a too small value may yield poorly restored
images. However, the step-sizeγn being inversely propor-
tional toθ, a compromise has to be done between the conver-
gence rate of the algorithm and the accuracy to the model. It
can be noticed that a significant gain is obtained in compari-
son with other methods except for the case whenα = 1 for
which the Anscombe approach gives similar results.

5. CONCLUSIONS

A new restoration algorithm has been proposed for wavelet-
based restoration in the presence of Poisson noise. This algo-

rithm allows us to minimize a wide class of convex objective
functions where the fidelity term is directly related to the Pois-
son likelihood. A quadratic extension is necessary to ensure
the gradient Lipschitz property of the smooth term. Although
not thoroughly discussed in this paper, this extension is also
beneficial to the improvement of the convergence rate.
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[10] F.-X. Dupé, M. J. Fadili, and J.-L. Starck, “Image deconvolution under
Poisson noise using sparse representations and proximal thresholding
iteration,” in Proc. Int. Conf. on Acoust., Speech and Sig. Proc., Las
Vegas, Mar. 30-Apr. 4, 2008, pp. 761–764.

[11] N. Pustelnik, C. Chaux, and J.-C. Pesquet, “A constrained forward-
backward algorithm for image recovery problems,” inProc. Eur.
Sig. and Image Proc. Conference, Lausanne, Switzerland, Aug. 25-29,
2008, 5p.

[12] C. Chaux, P. L. Combettes, J.-C. Pesquet, and V. R. Wajs,“A variational
formulation for frame-based inverse problems,”Inverse Problems, vol.
23, pp. 1495–1518, June 2007.

[13] J. A. Fessler, “Hybrid poisson/polynomial objective functions for to-
mographic image reconstruction from transmission scans,”IEEE Trans.
on Image Proc., vol. 4, pp. 1439–1450, 1995.

[14] C. Chaux, J.-C. Pesquet, and N. Pustelnik, “Nested itera-
tive algorithms for convex constrained image recovery problems,”
http://arxiv.org/abs/0806.3920, submitted.

[15] H. H. Bauschke and P. L. Combettes, “A Dykstra-like algorithm for
two monotone operators,”Pacific Journal of Optimization, vol. 4, pp.
383–391, Sept. 2008.

[16] C. Chaux, L. Duval, and J.-C. Pesquet, “Image analysis using a dual-
treeM -band wavelet transform,”IEEE Trans. on Image Proc., vol. 15,
no. 8, pp. 2397–2412, Aug. 2006.


