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ABSTRACT if they were corrupted by Gaussian noise. Fryzlewicz and
lterative optimization algorithms such as the forward¥bac '\ason explored another stabilizing variance approach]in [4

ward and Douglas-Rachford algorithms have recently gaineaamed the Haar_—Fis_z transform. T_he main drawback of this
much popularity since they provide efficient solutions to aPre-processing lies in the fact that it uses the Haar decempo

wide class of non-smooth convex minimization problemssition which is known to be especially efficient for blockeis

arising in signal/image recovery. However, when images ar
degraded by a convolution operator and a Poisson noise,
particular attention must be paid to the associated mirdmiz
tion problem. To solve it, we propose a new optimization

method which consists of two nested iterative steps. Thé'sed the Douglas-Rachford algorithm within a convex op-

effectiveness of the proposed method is demonstrated VHmzatlon framework. I_:qr Qecpnvolutlon problems, 6?'90'
numerical comparisons. rithms based on the minimization of the Kullback-Leibler

divergence were studied in [7]. An extension of this apphoac
Index Terms— Deconvolution, iterative methods, Pois- was investigated in [8] to incorporate a total variation glen
son distributions, optimization methods, wavelet trans® jty term. More recently, a block iterative method for binary
tomographic reconstruction based on convex contraint sets
1. INTRODUCTION was proposed in [9]. In [10, 11], the authors considered-algo
In many application areas, image restoration plays a pymarrithms mixing forward-backward'[lz] and Douglas-R_achford
role. When data are degraded by a convolutive blur and th&l€Ps: On the one hand, Dupé et al. [10] investigated an
addition of Gaussian noise, a large panel of methods can [f€gant adaptation of the Anscombe approach. On the other
used for restoration purposes. However, in real applicatio Nand, a quadratic extension dealing with signal dependent
the nature of the encountered noise often differs from a Gaug>a@ussian noise was introduced in [11]. Note that a differ-
sian one. For example, Poisson noise (which is dependefit Polynomial approximation of the objective function was
on image intensity) is found in tomography, astronomy and®™oPosed in [13]. The objective of this paper is to adapt the
microscopy. This kind of noise may appear much more chaléxtension proposed in [11] in order to deal with Poisson dis-

lenging to cope with. In this work, we consider the following tributions and, to investigate its properties. Notice tie
degradation model: proposed method relies on a wavelet-like representatiom as

some of the aforementioned approaches.

onstantimages. More recently, iterative algorithms tase

variational approach were proposed in the Poisson denois-
ing context. In [5], Sardy et al. developed &ppenalized
likelihood approach and more recently, in [6], the authors

2 = Pu(T7) (1) _ , , _
The paper is organized as follows: in Section 2, we for-
where7y is the original image degraded by a blur operdfor mulate the restoration problem from a frame representation
and contaminated by a Poisson noise with scaling fagtor perspective. A Bayesian interpretation of the related egnv
The effect of the noise is denoted BY,. minimization problem is given. Then, we propose a quadratic
The simplest way to take into account Poisson noise is textension technique to circumvent the problem of the non
process the data as if they were corrupted with Gaussiae noisipschitz differentiability of the likelihood of the Poisa
and consequently, to apply standard restoration tools][1, 2data. In Section 3, we present the new algorithm combining
A better approach consists of applying a pre-processisg (al a forward-backward and a Dykstra’s step so as to restore
called Variance Stabilizing Transform) on the data. Fomexa blurred images contaminated by Poisson noise. Finally, the
ple, the Anscombe transform [3] can be used to pre-procesffectiveness of the proposed approach is demonstrated via
Poisson data and then, to restore the transformed data anulation results.



2. IMAGE DECONVOLUTION IN THE PRESENCE From (2), it can be deduced thatv € R,
OF POISSON NOISE ,
, . PO NI

av — 2 4 21y (—) if 2(0 > 0andv > 0,
_ | N Yi(v) = § qo if 20 =0andv >0,
We consider the degradation model (1). An efficient proba- Yoo otherwise
bilistic prior model on the unknown imaggis adopted by '
considering a frame representation of this image [12].
thus use a linear representation of the fgyre= F*ZT where
F* . 'H — G is a tight frame synthesis operator with =
R¥, G = R¥ andK > N. This means that™ o F' = vld (Vo = (x(k))lngK eRX) fl) =) oér(=™). (6)
with v €]0, +oc[. In this context, (1) can be reformulated k=1
asz = P,(TF*T) whereT is the unknown vector of frame
coefficients.

2.1. Problem statement

W 5)
Ei:urthermore, the priof is defined as:

=

Finally, as it is customary in image processing, a constrain
on the range of the pixel values is introduced by setting

2.2. Bayesian framework C={zeH|Faxecl0,255"}. (7)
The imageu = Ty (resp. z) is viewed as a realization of
a nonnegative real-valued random vedtor= (U(Z‘))lgiSN
(resp.Z = (Z'V)1<i<). Conditionally toll = (u(”)1<;<nv  The functionsf andg as defined above are Iy (H) but an
€ g, the random vectol is assumed to have independentadditional assumption is often required to ensure the con-
components with conditional probability= (") € N, vergence of optimization algorithms such as the modified
‘ ()12 forward-backward algorithm in [11], namely should be
P2 =20 | TW —u®) = % exp(—au®) (2)  B-Lipschitz differentiable orC with 3 €0, 4-oc|. Unfortu-
Z nately the assumption is not satisfieddy
wherea €]0, +ool is a scaling parameter. In [11], a quadratic extension was proposed so as to improve
We then assume that the vecoof frame coefficients is convergence profiles. In the present case, we will show that
a realization of a random vectdf with independent compo- this technigue can be adapted in order to obtain a lower ap-
nents and, each Compone(@_(“’))KKK has a probability Proximation gy of g, which is Lipschitz differentiable on
density given byvz*) € R, pw (™) o exp(—¢r(z))) gj Tgls functI%rlllls.def.medbasgg = Wy oToF", where
where ¢, is a finite convex function allowing us to model € 10, +oofandWy is given by
frame coeff_icients._ A large choipe of potential functions N
(¢r)1<k<Kk is possible as shown in [12]. Under these as- (Vu _ (“(l))gigw c g) To(u) = Zwe,i(u(l))- (8)
=1

2.4. Lipschitz differentiability issue

sumptions, it is readily shown that a MAP estimator of the
vector of frame coefficient¥ can be obtained from by

solving: The functions(¢s ;)1<i<n are here defined asvv € R,

K Yo,i(v) =
(mmin Zqﬁk(m(k)) ~InP(Z=2|U=TF"z). 9
Tk € o SU7 4G (8) v+ Gio(0) i 20 > 0 and—e(6) < v < vi(6)

2.3. Link with convex optimization av if 2 =0and—e(0) <v <0

One generic problem in convex optimization is to determine: L ¥i(V) otherwise,
min  f(z) + g(x) (3)  wherev;(0) = (2(9/6)'/? is such thad < ¢/ (v) < 0 <
TE

v > v;(#), and the constant§ ((¢) and(; 1(6) are chosen
whereC is a closed convex subsetf, f andg are functions  so as to ensure the continuity § ; in v;(0). The validity of
inTo(H). T'o(H) denotes the class of lower semicontinuousthis approximation is secured by the following result:
convex functions taking their values jp-oco, +c0].

In our restoration probleny, denotes the fidelity term re- Proposition 2.1 [14] Assume that
lated to the Poisson distribution of the noise ghithe a priori
term onZ. Thus,g is chosen asfx € H, g(x) = V(T F*z),
where

(i) eis adecreasing positive function such that
hm9_>+oo 6(9) = O,

, N ‘ (i) 70,255]N C [0, +oc[V,
(Vu = (U(l))lgiSN € Q) U(u) = sz (u(l)). 4)
=1

(iii)y f is coercive orC' is bounded,



(iv) fis strictly convex orC'. itis known that, if(vn € N) z,, € C, then(z,,),en CONverges

= to a solution to Problem (9) [12, Theorem 5.4].
Then, there existd < ]0,+oo[ such that, for every € O ]

[0, 4+0c[, f + go has a unique minimizer on the convex set

C which is the minimizer of + g on C. 3.3. Dykstra's algorithm

The proposed quadratic extension is illustrated in Fig. 1A main difficulty in the application of the for\[/;alr]d—?_icgev}\:jard

Whend becomes greater than some lower vafu¢he solu- ?Igorlttkf:'mtls ti?e determlnatl?n qfro}gcpitf, o orithrm 115
tion of the original minimization problem is perfectly fodn orm this task, we propose to use Dykstra's algorithm [15].

; ; : : . Setrp € Handp, = g0 = 0. Sequence$r;,).>1 and
. Thech I 0 0 0 : X =
ﬁfg;ggﬁfxmated bys € choice of) will be discussed (sm)m>1 are generated by the following routinén € N,

(vaperla Tm+1, (Ierl) = Df(rmapmv q'm)

Sm = PC(rm +pm)

o Pm+1 = Tm + Pm — Sm
Tm+1 = DProXg(Sm + ¢m)
dm+1 = Sm + dm — T"m+1-

Then (7,)men and (s;,)men converge to the solution of
prox;,.(ro) [15, Theorem 3.3].

3.4. Resulting algorithm

The proposed method consists of the following combination
of the two previous algorithms:

Fig. 1. Quadratic approximation: Poisson likelihood (con- _ B

tinuous line) and its extensions fér = 0.3 (dashed line), O Setzp € C andn = 0.

0 50 100 150 200 250

6 = 0.07 (dash-dot line) and = 0.01 (dotted line). 0 Setrn o = 2n — 10 Vgo(2n) aNdpy,0 = gn,o = 0.
0 Form=0,...,M,
3. PROPOSED ALGORITHM @) (Sn,msPnym+1, Tnym+15 nymt1)
= D'Yw,f(r"?qm?pn,m) QTl’m)
3.1. Optimization background b) If sy m = Sn,m—1, gotoll.
The approximated version of Problem (3) can be expressed U Setzni1 =zn + An(sn,m - ln)
as: O Increment: (n <— n + 1) and gotal.
min f(x) + go(2) + tc(2) ©) The following result can then be deduced from the con-
where.c denotes the indicator function df, i.e, Va € H vergence properties of the forward-backward and Dykstra’s
o ' algorithms.

te(x) = 0if z € C, 400 otherwise. Among convex opti-

mization methods, the forward-backward algorithm appearﬁ,roposition 3.1 Under Assumptions (ii) and (iii) of Proposi-

as an appropriate solution for minimizing (9) whéns non . ; e
necessarily smooth. It is based on a useful tool called thEaIon 2.1, there exists a sequence of positive integfs )., cx

= - [ > M :
proximity operator. We recall that the proximity operatdr o such that_, ii(yn € N) My > My then, (zn)nen CONVErges
. to a solution to Problen{9).
f € Lo(H) isprox;: H — H: x — prox;z whereproxz
is the unique minimizer of + 1. — z||?. This operator gen-

eralizes the notion of projection asox, , = Pc Where P 3.5. Remark

denotes the projection ont. Other convex optimization algorithms can be envisaged to
solve Problem (9). On the one hand, it is possible to re-

3.2. Forward-backward approach place the Dykstra’s inner loop by iterations of the Douglas-

Rachford algorithm [6]. On the other hand, a minimization
strategy relying on the Douglas-Rachford algorithm can be
employed where an inner loop consists of iterations of the
forward-backward algorithm [12]. In our simulations how-
ever, it appeared that the algorithm we propose in this paper
where~,, €]0,2(v0|T|/?)~![ is the algorithm step-size and is more effective in terms of convergence speed than these
An €]0,1[is a relaxation parameter. Under these conditionstwo alternatives.

Let o € C be an initial image. The algorithm constructs a
sequencézx,, ), >1 by the iteration: for every, € N,

Tnt1 = Tn + An (prOXLC_'_,),nf(l‘n — Y Vge(zn)) — ln)



4. SIMULATION RESULTS

rithm allows us to minimize a wide class of convex objective

o _ _ functions where the fidelity term is directly related to thad?
The objective of the presented experiment is to recover gon likelihood. A quadratic extension is necessary to ensur

microscopy image from a degraded observatiomgener-

the gradient Lipschitz property of the smooth term. Althbug

ated according to Model (1). The degradation is obtainegot thoroughly discussed in this paper, this extensionss al

by applying a5 x 5 positive uniform blur with||T'|| = 1.
To restore this image, a tight frame version of the dual-tree
transform (DTT) proposed in [16}/(= 2) using Alkin and
Caglar 4-band filter bank has been employed. Strictly con-
vex non-differentiable potential functiong, are chosen, of
the formwg| . [P* + xx| .| where(wy, xx) € ]0,+oo[* and

pr € {4/3,3/2,2}. We have used the algorithm proposed [2]
in Section 3.4 witheg = Pz (see (7) for the definition of
C) and~y, = 0.995 #~'. Visual results are shown in the
following figure.

(1]

(3]

(4]

(3]

Original

Degradedy = 0.1 Restoréde =0.1 [6]

In Table 1, we provide a quantitative comparison be-
tween the regularized Expectation-Maximization algarith
proposed in [7], the Haar-Fisz transform [4], the Anscombe
approachin [10] and the proposed method for different \&lue
of the quadratic extension paramefer

[7]

(8]

| o || 0.01 | 0.05 | 0.1 | 1 |
EM-Req. [7] 10.7| 13.0| 14.1| 17.8 9]
Haar-Fisz - DTT [4] 8.69| 13.1| 14.8| 18.2
Anscombe - DTT [10] 11.9| 154 16.4| 19.1
Quadratic #=0.001 || 13.6| 15.6| 16.3| 0.00 [10]
extension DTT| # = 0.1 13.6| 15.6| 16.5| 19.1

Table 1. SNR for the microscopy image. For quadratic ex-
tension method, iteration numbe&500 wherd = 0.001 and
~ 1000 whend = 0.1.

(11]

As mentioned in Section 2.4, a large valugdddllows us

to improve the restoration performance (closer approxiomat [12]
ge Of g), whereas a too small value may yield poorly restored
images. However, the step-sizg being inversely propor- |3
tional tof, a compromise has to be done between the conver-
gence rate of the algorithm and the accuracy to the model. It
can be noticed that a significant gain is obtained in comparii4]
son with other methods except for the case whes 1 for
which the Anscombe approach gives similar results. (1]

5. CONCLUSIONS
[16]
A new restoration algorithm has been proposed for wavelet-
based restoration in the presence of Poisson noise. Thds alg

beneficial to the improvement of the convergence rate.
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