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ABSTRACT

This paper proposes a distributed representation algorithm for
multi-view images that are jointly reconstructed at the de-
coder. Compressed versions of each image are first obtained
independently with random projections. The multiple im-
ages are then jointly reconstructed by the decoder, under the
assumption that the correlation between images can be rep-
resented by local geometric transformations. We build on
the compressed sensing framework and formulate the joint
reconstruction as a lp-/; optimization problem. It tends to
minimize the MSE distortion of the decoded images, under
the constraint that these images have sparse and correlated
representations over a structured dictionary of atoms. Sim-
ulation results with multi-view images demonstrate that our
approach achieves better reconstruction results than indepen-
dent decoding. Moreover, we show the advantage of struc-
tured dictionaries for capturing the geometrical correlation
between multi-view images.

Index Terms— compressed sensing, correlation model,
stereo images, structured dictionaries, joint reconstruction

1. INTRODUCTION

The advent of distributed architectures has recently raised many

interesting research questions for the efficient representation
of information in correlated signals captured independently
by multiple sensors. In particular, we consider a vision sensor
network, in which a number of distributed nodes acquire data
and report it to a central collection point which reconstructs
the multiple images. In such networks, communication en-
ergy and bandwidth are often scarce resources, which im-
poses important constraints in terms of communication costs
or bit rate. Distributed source coding [1] permits to achieve

substantial rate savings when the correlation between the source

can be modeled accurately, which is not trivial in images.

In this paper, we adopt a different approach where sensors
perform random measurements on the multi-view images, and
the joint decoder tries to estimate the underlying correlation
between images for efficient reconstruction. We build on the
compressed sensing framework, and we formulate the joint
reconstruction problem as a l3-l; optimization problem. The
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decoder tries to minimize the distortion of the reconstructed
images. At the same time, it imposes that the images have
sparse representations in a structured dictionary of geometric
atoms, and that these representations are correlated by local
geometrical transformations such as translations or rotation.

Compressed sensing has been extended recently to dis-
tributed scenarios, but most recent works consider that the
multiple observations are noisy representations of the same
underlying signal, or that signals have the same sparse sup-
port [2]. Our work rather addresses the problem where the ob-
servations represent slightly transformed versions of a com-
mon signal, as well as innovation. Research work in super-
resolution [3] or recently compressive coding aperture prob-
lems [4] similarly try to exploit multiple correlated signals for
effective joint reconstruction. They however do not exploit
the interesting properties of redundant structured dictionaries
for joint reconstruction of signals that are related by local ge-
ometrical transformations.

The rest of the paper is organized as follows: Compressed
sensing and structured dictionaries are discussed in Section 2.
We propose our novel joint reconstruction approach for multi-
view images in Section 3. In Section 4, we demonstrate the
superiority of our algorithm over traditional approaches for
the joint reconstruction of multi-view images.

2. PRELIMINARIES

2.1. Compressed sensing

The compressed sensing framework [5] provides an interest-
ing new paradigm for the sampling and reconstruction of sig-
nals, where a small number of random measurements are suf-
ficient for representing signals that have a sparse support in
some basis 1. In particular, let us consider a very high di-
mensional signal X € R™. The recovery of the signal can
be achieved with high accuracy from a much smaller dimen-
sional observation b in a measurement basis ¢ by the mini-
mization of the I; norm ||a||; of the coefficient vector « in
the sparse basis 1, under the constraint ||b — ¢tpa||3 < €. The
observation matrix ¢ is of the size M x N(M < N), and b
is M x 1 vector where M << N. The measurement matrix
¢ can be random matrix, built on random Gaussian or binary



vectors. Proper reconstruction can be obtained when ¢ sat-
isfies the Restricted Isometry Property (RIP) [6], or when )
and ¢ are sufficiently incoherent. Finally, the basis v is usu-
ally a subset of an overcomplete dictionary, which provides a
K -sparse representation of X . Namely X can be written as a
linear combination of K atoms (i.e., basis functions).

2.2. Sparse approximations with structured dictionaries

Given a redundant dictionary of atoms D = {¢; },k=1... P,
in the Hilbert space H, we say that an image I; has a sparse

representation in D if it can be approximated by a linear com-

bination of a small number of vectors from D that are repre-

sented in the matrix ;. Therefore, sparse approximation of

the image I; can be expressed as [; = 11«1 + 11, where 13

is the approximation error.

In particular, one could used a redundant structured dic-
tionary D built by applying geometrical transformations to
a generating function, for example. A structured and possi-
bly redundant dictionary D = {¢, v € I'} spanning the
input space. The atoms in a structured dictionary are con-
structed by applying geometric transformations to a generat-
ing mother function denoted by 1. A geometric transforma-
tion v € T' can be represented by a unitary operator U(7),
so that a structured dictionary takes the following form, D =
{9, U(y)¥, v € T'}. With digital images, the simplest trans-
formation +;, applied to the i-th atom, may be one of the fol-
lowing three types.

o Translation by t; = [tiy tiy]T. U(t;) moves the gen-
erating function across the image i.e., U(¢;)v(z,y) =
’(/J(LIL‘ - tmy - tiy)'

e Rotation by ;. U (0;) rotates the generating function by
angle 0; i.e., U(0;)9¥(x,y) = ¥(cos(6;)x + sin(8;)y,
cos(f;)y — sin(6;)x).

e Anisotropic scaling by a; = [ajs aiy]—r. U(a;) scales
the generating function anisotropically in the two direc-
tions i.e., U(a:)Y(z, ) (%=, 22).

Composing all the above transformations yields a transfor-
mation with parameters y; = {¢;,a;,0;} € T', which denotes
a synthesis of translations, anisotropic scalings and rotations.
That forms a matrix ¥, where each row correspond to an atom
in D. As it can be seen from above discussion, structured
dictionaries provide an easy way for the joint representation
of images that are correlated by geometrical transforms since
the indices of atoms in the dictionary contains the informa-
tion about the geometry of the basis functions. Basically, if
I, and I are correlated under some local geometrical trans-
forms, one could write Io ~ F(1)1)aa1 + acag, where 1)y
represents atoms that are used for the sparse approximation of
I, and F represents the geometrical transform that results in
other atoms in the same dictionary D.

3. JOINT RECONSTRUCTION

We consider now the case where compressed representation
of multi-view images have been generated in a distributed
way. The decoder jointly reconstructs the multi-view images
in exploiting the correlation between the different signals. In
particular, we assume that this correlation takes the form of
local geometrical transformations. In particular, we assume
that the correlation between images could be captured by ge-
ometrical transformation of atoms: I ~ F'(¢1)ag1 + acuas.

Each sensor performs independent measurements for each
image b; = ¢;1;, and the decoder jointly reconstructs the mul-
tiple image using the correlation model above, when a struc-
tured dictionary @ is used at decoder. Without loss of gener-
ality, we assume that we have three correlated images, [, Io
and I5. Under the correlation model, we can write:

I =1, (D
I ~ Fio(¢1)ag1 + Paaaa, )
I3 = Fi3(1) o1 + Fas(12)ase + Y3ass €))

We can cast the reconstruction problem as a [? — [ optimiza-
tion problem where we jointly minimize the reconstruction
error and the number of components used in the reconstruc-
tion:

(F*,a*) = arg min||B—¢AaH%—|—THa||1, 4)

iy

where B = [bl,bg, b3}T,
T
o= [01,04217(12270431,032,0433] s

v 0 0 0 0 0
A= 0 Fia(¥1) 1o 0 0 0 1,
0 0 0 Fis(yn) Fos(v2) s

and 1, 12, 13 are the subset dictionaries for the stereo im-
ages Iy, I and I5.

The problem is equivalent to minimize the norm of the
coefficient vector,

min_flofly , (5)
subject to 3[|B — ¢pAa||3 <e.

Such an optimization problem is similar to a basis pursuit
formulation and can be solved by traditional linear program-
ming techniques [7] .

Finally, note that the above optimization problem could
be formulated in a similar manner when images I, or I3 are
assumed to be the reference images, i.e., they have not been
transformed. For example, when the problem is centered on
I, we have

I = Y11 + Fia(¥2)aas, (6)
Ir = s, @)
I3 = Fa3(v2)asa + 3as3 (3



4. EXPERIMENTAL RESULTS

4.1. Setup

For the joint reconstruction, we choose to use the structured
dictionary proposed in [8]. It is built by applying geometric
transformations to a generating mother function g, the atoms
are, therefore, indexed by a string v composed of five param-
eters: translation #, anisotropic scaling @ and rotation 6. Any
atom in our dictionary can be finally be expressed in the fol-
lowing form:

(461% — 2)exp(—(G1° + 627)) ,

. cos(0)(x —t1) + sin(0)(y — t2)

g1 = a )
1
by = cos(0)(y — ta2) + sin(0)(xz — t1)
=
a

We build the overcomplete dictionary v as follows: Let x, y
vary from 1 to 32 respectively. Let 6 vary from O to 7 with the
step size /18, a; = ag = 4. Therefore, the full dictionary
contains totally 19456 atoms. Specifically, the indices from
1024 x (k—1) +1 to 1024 x k corresponds to the atoms with
0 = (k—1)7/18. We select the sub-dictionary 1), by comput-
ing the absolute value of inner products of the measurement
b for image I; and ¢t and select the first W atoms with the
maximum results.

In our experiments, we consider translation and rotation
in the correlation between images. We then solve the opti-
mization problems above using SPGLI1 toolbox at [9], which
is a Matlab solver for large-scale one-norm regularized least
squares relying on basis pursuit. For all the simulations, the
tolerance € = 0.01 and the iteration times is set to be 500.
The stereo images are available at the database [10], which
are reshaped into the size of 64 by 64 with bilinear interpola-
tion and jointly reconstructed with 32 by 32 subimages.

4.2. Joint reconstruction performance

We first compare the performance of the joint reconstruction
algorithm, where the correlation is modeled as local or global
transformations between images. For local transforms, each
atom can undergo different transformation. In the latter, we
consider that all the atoms in ; undergo the same transfor-
mation, which is chosen as the transformation that appears
the most frequently among pairs of atoms in different images.
We compare the performance to independent reconstruction,
where each image is reconstructed independently with clas-
sical compressive sensing. It uses the same number of mea-
surements as the joint reconstruction algorithm, and the same
number of atoms for the reconstruction. The illumination of
each pixel value has been normalized into the range from 0 to
1.

Figures 1 and 2 shows the average MSE distortion for re-
construction based on the optimization problems of Egs. (1-3)
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Fig. 1. MSE distortion versus different number of atoms, with
the optimization problem of Eqgs. (1-3).
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Fig. 2. MSE distortion versus different number of measure-
ments, with the optimization problem of Egs. (6-8).

and (6-8) respectively, as a function of the number of mea-
surements per image. It can be seen that our joint reconstruc-
tion approach is much superior to independent reconstruction
especially when a small number of atoms or measurements
per image is utilized due to a sparser representation when the
geometrical correlation is considered. Moreover, local trans-
formations of atoms yield lower MSE than global transforma-
tions. It has to be noted however that global transformations
require less computation time.

We then illustrate in Fig. 3 the proposed joint reconstruc-
tion scheme when the first or the second image is used as the
reference image. This respectively corresponds to the opti-
mization problems given by Eqs (1-3) and (6-8) above. We
select 1800 atoms and 600 measurements for each image. It
can be seen that the joint reconstruction improves the quality
of all the images, except the reference image. It can be seen
that choosing image 1 as reference image, the reconstruction
of image 3 is the best of the three images due to the corre-
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Fig. 3. The comparison of reconstruction results and MSE
with optimization problems of Egs. (1-3) and (6-8).

lation models with image 1 and image 2. The proposed ap-
proach can be easily extended to jointly reconstruction of L
images and significant improvements are achieved for N — 1
images.

4.3. Influence of reconstruction basis

Wavelet bases are widely used for reconstruction of images
in the compressed sensing framework [5]. Comparing with a
wavelet basis, our structured dictionary has two main superi-
orities:

1. Our structured dictionary contains translation and rota-
tion, which provides great convenience and saves sig-
nificant computation time when multi-view images are
jointly reconstructed although we didnot show here due
to the limitation of the space.

2. Given the same limited number of atoms and measure-
ments, the atoms from the structured dictionary gen-
erally provides higher approximation performance for
images at low rate

We illustrate in Table I the performance of independent recon-
struction with a haar wavelet basis and joint reconstruction
with our structured dictionary. We consider three multiview
images with 1024 atoms for the reference image.

Table 1. Comparison of mean square error for reconstruction
with Haar wavelet basis, and our dictionary

atoms haar wavelet | gaussian (Egs. (1-3))
400 measurements 0.046 0.032
500 measurements 0.039 0.028
600 measurements 0.025 0.018
700 measurements 0.021 0.013
800 measurements 0.019 0.009

5. CONCLUSION

In this paper, we propose a novel approach for joint recon-
struction of multiview images that have been compressed in-
dependently. We build on the compressed sensing framework,
and introduce a geometrical correlation model for the joint re-
construction of the images at the decoder. In particular, we
assume that the images have a sparse decomposition over a
structured dictionary of geometrical atoms. Furthermore, we
assume the decompositions of different images are related by
local geometrical transformations of atoms, within the same
dictionary. We formulate the joint reconstruction as a l3-I1 op-
timization problem, and experimental results demonstrate the
superiority of our approach over independent reconstruction
of multi-view images. Future work will consider the compu-
tational complexity of the proposed approach.
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