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ABSTRACT

We consider camera self-calibration, i.e. the estimation of param-
eters for camera sensors, in the setting of a visual sensor network
where the sensors are distributed and energy-constrained. With the
objective of reducing the communication burden and thereby max-
imizing network lifetime, we propose an energy-efficient approach
for self-calibration where feature points are extracted locally at the
cameras and efficient descriptions for these features are transmitted
to a central processor that performs the self-calibration. Specifically,
in this work we use reduced-dimensionality quantized approxima-
tions as efficient feature descriptors. The effectiveness of the pro-
posed technique is validated through feature matching, and epipolar
geometry estimation which enable self-calibration of the network.

Index Terms— Local feature descriptor, visual (image) sensor
network, self-calibration, energy constraint.

1. INTRODUCTION

Estimating the geometry of a camera network from the image con-
tents only, i.e. self-calibration [1,2], is a critical foundation for many
applications such as stereo, 3D modeling and tracking. In visual
sensor networks (VSN) that consist of nodes formed by portable de-
vices with imaging and communication capabilities, self-calibration
should also take into account the energy consumption at these cam-
eras, since these devices are usually battery-powered thus energy
is usually the dominating limiting factor on the utility of these net-
works. The competing requirements in VSN applications (e.g. smart
surveillance [3]) include long duration of unattended operation and
limited energy supply, and motivate our investigation of an energy
efficient approach for the self-calibration problem in a VSN.

We consider an application scenario illustrated in Fig. 1, where
battery-powered image sensors are deployed to monitor a target re-
gion. Each of these cameras only communicates with a central pro-
cessor (CP) which attempts self-calibration of the cameras in the net-
work. We assume that the energy consumption at the camera nodes is
dominated by the power required to send data to the CP, and thus aim
at minimizing the data that these cameras need to transmit. For this
purpose, the cameras locally extract feature points in the captured
image, and only send the descriptions for these feature points to the
CP.We use the scale-invariant transform (SIFT) based difference-of-
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Fig. 1. N cameras deployed to monitor a 3D scene. A CP commu-
nicates with these cameras and coordinates the network.

Gaussian (DoG) features [4] and investigate efficient description of
these features by using dimensionality reduction and quantization.

Dimensionality reduction for description vectors of image fea-
tures has been considered in prior work [5,6]. In the context of VSN,
[5] also considers the selection of a subset of image features. How-
ever, these dimensionality-reduced features are still represented in a
high resolution (32 bits in [5]). As we demonstrate, well-designed
quantization for these descriptors reduces the communication cost
dramatically. Experimental results show that a 20 dimensional fea-
ture descriptor using 20 × 4 bits, each dimension represented by 4
bit, sustains a distinctive description for a DoG feature. Another
potential application of the efficient feature description is image re-
trieval [7], where low dimensional, distinctive features of an image
are obtained and used to calculate the similarity of this image with
an query image.

2. FEATURE EXTRACTION AND DESCRIPTION

We describe the features used in our approach and their efficient de-
scriptions. These operations are performed by the cameras in the
VSN.

Affine invariant feature detection [8] has been extensively stud-
ied recently. These features are robust to certain level of scale, illu-
mination and viewpoint changes across multiple views. We use the
DoG feature detector of SIFT [4], where feature points and the cor-
responding scales are selected from local extrema in the DoG pyra-
mids. Orientation of the feature point is assigned to be the dominat-
ing gradient orientation in a neighborhood window. The coordinates,
gradient orientations are rotated relative to this assigned orientation
to obtain rotation-invariance. The descriptors are calculated as the
normalized histogram of gradients around the selected feature point
in the scale-space image. Using this process, each feature point is
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represented by a 128-dimensional feature vector. Since the descrip-
tor is normalized according to the orientation of the feature point
and estimated in the scale-space, they sustain certain robustness un-
der rotation and scaling. This feature descriptor, referred to as the
scale-invariant feature transform (SIFT), performs better than other
descriptors as shown in a comparative study [9].

The SIFT descriptor consists of 128 real numbers, which re-
quires 128 × 32 bits if each real number is represented by 4 bytes.
The sizes of the feature descriptors are usually comparable with the
image itself, or even larger. In the application scenario we consider,
an efficient feature description is desirable in order to reduce com-
munication costs. To this end, we consider dimensionality reduced
and quantized feature description, and investigate the trade-off be-
tween the efficiency of feature description and the distinctiveness of
these descriptors.

2.1. Dimensionality Reduced Feature Description

One (straightforward) approach to reduce the dimensionality of the
SIFT features consists of performing a principal components anal-
ysis (PCA) on the 128 × 1 feature vectors computed by the SIFT
algorithm [4]. For adequate performance, however, this “SIFT-PCA”
approach [5] requires between k = 40 to 80 coefficients and addi-
tionally the 128 × k describing the PCA transformation. Superior
performance is obtained with an alternative approach called PCA-
SIFT [6] that first performs the PCA on the rotationally aligned DoG
gradient distributions at the feature points and then directly utilizes
the PCA coefficients as the feature descriptors for feature match-
ing. Specifically, for PCA-SIFT, using the 2 × 1 gradients in a
39 × 39 neighborhood window for each feature point and rotating
these gradients with respect to the dominant orientation provides a
2 × 39 × 39 = 3042 dimensional vector. It is observed that in this
case, using k = 36 (or even k = 20) of the principal components
provides a feature matching performance that is close to (or in some
cases better than) the performance obtained with the original 128 di-
mensional SIFT descriptor. We thus adopt PCA-SIFT as the basis
of our feature description and proceed to consider quantization of
PCA-SIFT feature vectors.

2.2. Quantized Feature Description

The quantization for feature descriptors is desirable for both compact
representation and efficient computation (matching), the former is
important in the communication system we consider, the latter is
critical for an image retrieval system.

We first perform an experimental study for the coefficients in a
PCA-SIFT description. We use 24 images from the Kodak color im-
age database1, from which 51672 features points are detected and
used as training data. The feature vector λ = [λ1, λ2, . . . , λk] is
normalized so that ‖λ ‖ = 1. We thus obtain 51672 samples for
each normalized coefficient λi, i = 1, 2, . . . , k, in the k dimen-
sional feature descriptors. Figure 2 shows the histograms for sev-
eral of these coefficients. From these histograms, we see that except
for the first two coefficients λ1,λ2, the remaining coefficients ex-
hibit similar distributions (approximately Laplacian with nearly the
same variances). Higher ordered coefficients (λ30) are only slightly
more concentrated at zero compared to lower ordered coefficients

1Images available at http://www.site.uottawa.ca/
˜edubois/demosaicking/
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Fig. 2. Histogram of selected coefficients of the PCA feature de-
scription, obtained from training data using 51672 feature points de-
tected in the Kodak image database.

(λ3). This observation suggests that more bits should be allocated
for lower ordered coefficients. Since the differences are small, how-
ever, we allocate an equal number of bits to each of the coefficients,
which we denote by t.

For each coefficient we utilize a non-uniform scalar quantizer2

obtained by using the K-means [10] algorithm, which in the scalar
scenario in consideration corresponds to the Lloyd-Max [11] algo-
rithm with the empirical histogram as the probability distribution
function. For each coefficient λi, this process yields N = 2t rep-
resentation points {cij}

N
j=1, for i = 1, 2, . . . , k and corresponding

intervals {(lij , uij)}
N
j=1, where the interval (lij , uij) is represented

by cij in the quantized representation. By building up this quanti-
zation table represented by {(lij , uij ; cij)}

N
j=1, for each coefficient

λi, a new feature description can be represented by kt = k× log
2
N

bits. We consider different values of N = 2, 4, . . . , 256 to examine
the effect of different quantization levels.

For a typical setting of k = 20, N = 16, and assuming each
of the image coordinates is represented by 4 bytes, the description
for a feature point can be represented by 18 bytes. If 500 feature
points are detected and described, the total message length is 9KB
(kilo bytes), which is significantly smaller than the approach in [5],
where a typical message length is 120KB and contains information
for fewer features.

3. ESTIMATING EPIPOLAR GEOMETRY VIA ROBUST
FEATUREMATCHING

We investigate the robustness of the quantized feature descriptors by
considering the estimation of epipolar geometry between two views
of a scene. The epipolar geometry is described by the fundamental
matrix F ∈ R

3×3, for which the determinant det(F) = 0. For a
point pi in image I1, the correspondence qj in image I2 lies on the
line defined by li = Fpi, i.e. qT

j Fpi = 0, which is also referred
to as the epipolar constraint [1]. Estimating the fundamental ma-
trix is the critical step in many self-calibration methods [1] and the

2Note the PCA decorrelates the coefficients, so per coefficient scalar
quantization causes limited performance degradation over vector quantiza-
tion.
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accuracy of fundamental matrix estimation therefore allows us to as-
sess the performance of our efficient feature description scheme in
an energy-efficient approach for the self-calibration of a VSN.

Tentative matches between features in images I1 and I2 are first
identified. For feature pi in I1, the feature qj in image I2 is identi-
fied as a tentative match if

D(λ (pi), λ (qj)) < ρD(λ (pi), λ (ql)), for l �= j, (1)

where λ (pi) represents the the description vector of pi, D(·) is a
distance function (in our case is the Euclidean distance) and ρ is a
parameter which defines the matching threshold. Smaller values of
ρ result in more reliable matches, however the number of matches
decrease.

The estimation of fundamental matrix is quite sensitive to noise
and false matches. The Random Sample Consensus (RANSAC) al-
gorithm [12] is used to eliminate false matches. The RANSAC al-
gorithm operates in an iterative manner. In each iteration, 8 tentative
correspondences are randomly selected to estimate the fundamen-
tal matrix using a linear least-squares approach [1] which is derived
from the epipolar constraint. In addition, we normalize the input
data and impose the rank-two constraint for better estimation accu-
racy. Next, from the estimated fundamental matrix, the epipolar line
li is calculated for each point pi. Inlier (correct) matches are identi-
fied as the tentative matches for which the distance qT

j li of the ten-
tative match qj from the epipolar line lies below a pre-determined
threshold. The iteration ends when the average distances of the in-
lier matches with the epipolar line is smaller than a threshold or a
maximum number of iterations have been executed.

4. EXPERIMENTAL RESULTS

We examine the performance of the proposed feature description by
estimating the epipolar geometry of several image pairs under vari-
ous imaging situations. Four image pairs shown in Fig. 4 are used in
our experiments3 to represent images under viewpoint change, scal-
ing and rotation, blurring, and illumination change, respectively.

We compare several feature descriptions: the original SIFT,
PCA-SIFT, and Q-SIFT proposed in this paper. We consider sev-
eral quantization schemes with t = 2, 4, 8 representing the number
of bits used to represent each feature coefficient. For PCA-SIFT and
Q-SIFT, we also investigate the effect of the dimensions of feature
descriptions by considering k = 10, 20, 36. Using feature descrip-
tions extracted from each pair of images, the procedure described in
Section 3 is used to estimate matched features and the epipolar ge-
ometry. The ratio in (1) is set as ρ = 0.85. Experimental results are
summarized in Table 1, indicating several interesting observations:

i) SIFT is more robust under viewpoint change. This is indi-
cated by experiments with Graffiti, where the largest number of in-
lier matches are identified using SIFT. PCA-SIFT and Q-SIFT also
achieve robust estimates of the epipolar geometry when k = 20, 36.
However, insufficient inlier matches are identified when k = 10.

ii) In other experiments with image pairs under rotation, scal-
ing, blurring and lighting change, the epipolar geometry is success-
fully estimated and large number of inlier matches are found. Fur-
thermore, the number of inlier matches increase as the description

3These images are available from http://www.robots.ox.ac.
uk/˜vgg/research/affine/.
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(e) (f) (g) (h)

Fig. 3. Test images used in experiments. Different imaging sit-
uations are represented by: (a,b) Graffiti, viewpoint change. (c,d)
boat, rotation and scaling. (e,f) car, illumination change. (g,h) bike,
blurring.

length k increases. For instance, experiments for the boat image us-
ing Q-SIFT with t = 2, yielded 310, 496, 549 inlier matches, for
k = 10, 20, 36, respectively. The residues in these experiments, i.e.
the mean absolute difference between the inlier matches and the cor-
responding epipolar lines are obtained as 0.273, 0.242, 0.295, which
are close to the residue for the original SIFT algorithm (0.215).

iii) Feature descriptions using t = 4, 8 bits for each coefficient
result in significant larger number of inlier matches compared to
t = 2, especially under viewpoint change. However, the experiment
results with t = 8 bits offer only a slight performance improvement
over t = 4 bits. For instance, experiments for the graffiti image
using Q-SIFT with k = 20, yielded 86, 130, 145 inlier matches for
t = 2, 4, 8, respectively. Another experiment with the boat image
using Q-SIFT with k = 20, obtained 496, 578, 598 inlier matches,
respectively, for t = 2, 4, 8.

Given the observations above, Q-SIFT with k = 20, t = 4
clearly achieves an efficient trade-off between compact representa-
tion and distinctive feature description. Combined with the 4-bytes
per image coordinate (for capturing feature locations with sub-pixel
accuracy), the resulting representation requires 18 bytes for the de-
scription of each feature point, which is a significant improvement
over a previously proposed alternative [5].

We also visualize the epipolar geometry estimated for the Graf-
fiti image pair using Q-SIFT with k = 20, t = 4. As illustrated
in Fig. 4, randomly selected 10 inlier matches are connected across
two views, the epipolar line for these 10 features are also shown. As
expected, these epipolar lines intersect at the epipole [1].

5. DISCUSSION AND CONCLUSION

In the context of energy-efficient self-calibration of a VSN, we pro-
pose an efficient description for affine-invariant features in an im-
age. The feature descriptions are locally computed and transmitted
to a CP for the self-calibration. Each feature point is represented by
18 bytes, thus a typical message length is 9KB if 500 features are
represented. The proposed technique, thus significantly outperforms
the simple approach of sending a compressed image. Experimental
results demonstrate that using a 20 dimensional feature vector, with
each dimension represented by 4 bits, can achieve distinctive feature
descriptions and an accurate estimate for the epipolar geometry. We
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descriptor graffiti boat bike car
nt nf df nt nf df nt nf df nt nf df

SIFT 365 251 0.368 730 663 0.215 602 559 0.255 376 355 0.219

PCA-SIFT
k=36 247 163 0.389 660 599 0.242 555 517 0.194 361 337 0.208
k=20 260 140 0.334 674 582 0.247 559 512 0.247 365 340 0.170
k=10 291 62 0.331 688 532 0.236 557 490 0.195 353 319 0.216

Q-SIFT (2)
k=36 168 87 0.376 601 549 0.273 521 481 0.212 340 323 0.250
k=20 220 86 0.310 596 496 0.242 517 459 0.194 325 299 0.245
k=10 318 8 0.271 580 310 0.295 463 337 0.263 280 217 0.234

Q-SIFT (4)
k=36 265 148 0.372 670 595 0.266 550 509 0.211 353 335 0.222
k=20 281 130 0.460 684 578 0.215 571 508 0.273 359 337 0.183
k=10 325 52 0.459 671 495 0.242 560 473 0.197 339 305 0.258

Q-SIFT (8)
k=36 265 143 0.353 666 598 0.213 559 517 0.176 363 340 0.218
k=20 289 145 0.376 695 591 0.274 569 516 0.198 367 344 0.219
k=10 317 51 0.376 701 529 0.256 573 488 0.203 360 323 0.241

Table 1. Estimation of epipolar geometry using different feature descriptors. The estimation result is described by three numbers nt, nf and
df indicating, respectively, the number of initial tentative matches identified from feature description using the criterion (1), the number of
final inlier matches satisfying the epipolar constraint, and the average distance of these final inlier matches to the corresponding epipolar line.
For instance, in the experiment with graffiti using SIFT description, we obtain 365 initial matches, 251 inlier matches after estimating the
epipolar constraint and the average distance to the epipolar line is 0.368. Q-SIFT (2) indicates using Q-SIFT and t = 2 bits for each feature
coefficient. The results of using Q-SIFT with t = 1 is not satisfactory, and not included.

(a) (b)

Fig. 4. (a) 10 out of the 130 inlier matches in Graffiti. Correspond-
ing features are connected by the line across two images. (b) The
epipolar lines of the 10 features in the top image are plotted, the
corresponding feature in the bottom image lies in this line. These
epipolar lines intersect at the epipole.

conclude with a few remarks and our future work.
i) This paper focuses on efficient representation of a feature

point. In order to achieve effective representation of an image, a
method to select a subset of feature point from an image is required,
such as in [5].

ii) Estimation of the epipolar geometry and robust matching
serve as the first stage for self-calibration of a camera network, in
continuing work we are exploring the application of the technique in
the full self-calibration process and will be investigating the trade-
off between efficient local feature representation and the accuracy of

the estimated network geometry.
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