
DELAY-BASED OVERLAY CONSTRUCTION IN P2P VIDEO BROADCAST

Jacob Chakareski and Pascal Frossard

Signal Processing Laboratory (LTS4)
Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015 - Switzerland

ABSTRACT

We consider streaming video content over an overlay networkof
peer nodes. Each of the nodes employs a mesh-pull mechanism
to organize the download of data units from its neighbours. We
propose a novel algorithm for constructing the distribution overlay,
where peers are arranged in neighbourhoods that exhibit similar la-
tency values from the origin media server. Such an organization in-
creases data sharing between neighbours in broadcast applications
and reduces the play-out latency at a peer. Each of the nodes in
the overlay is further equipped with a packet scheduling procedure
that requests data units from neighbours in the order of their im-
portance and their popularity within the neighbourhood. Finally, re-
questing peers share the upload bandwidth of a sending peer in pro-
portion to their transmission rate to that peer in order to discourage
free-riding in the system. Our simulation results show thatthe pro-
posed mesh construction procedure provides improved performance
in terms of frame-freeze and playback latency relative to a conven-
tional approach where peer neighbours are selected at random. Cor-
responding gains in video quality for the media presentation are also
registered due to the improved continuity of the playback experience.

Index Terms— peer-to-peer systems, video streaming, dis-
tributed computation and control, overlay networks.

1. INTRODUCTION

Delivering live or streaming video content over networks ofpeers is
increasingly becoming common nowadays. Propelled by the steady
increase of residential access bandwidth and an audience ever more
hungry for a multimedia experience on the Internet, a class of ap-
plications have emerged that enable sharing data packets with de-
livery deadlines over peer-to-peer (P2P) overlay networks. Systems
like PPLive [1], PPStream [2], and Coolstreaming [3], have been
successfully deployed and tested for broadcasting/multicasting live
events and for streaming pre-encoded content to large audiences in
the Internet.

Still, the present P2P multimedia experience is marred by un-
controllable start-up delays, frequent freezes of the multimedia play-
back, and significant fluctuations of audio-video quality. In our view,
there are two major reasons for these apparent shortcomings. First,
the construction of the overlay network over which the data is de-
livered and the exchange mechanisms that the peers employ toshare
their data have been mainly carried over from earlier P2P file/data
sharing applications. Hence, as such they are ill equipped to deal
with the specificities of multimedia data, such as delivery deadlines
and unequal importance for the reconstruction quality. This in turn
makes them inefficient in terms of streaming performance forthe
multimedia presentation that they serve. Second, the presence of
free-riding in a system also has a negative effect on the overall per-
formance as it counters the main premise of P2P overlay networks,

i.e., that the available system bandwidth increases with the number
of peers. Specifically, free-riders are peers that want to obtain con-
tent from other peers, but that do not want to serve peers withtheir
own content. Hence, effectively this is manifested as a reduction in
serving bandwidth to some peers which in turn causes extended de-
lays and variable audio-video quality of the multimedia presentation
at these peers.

To address these deficiencies we design a mesh construction pro-
cedure that creates neighbourhoods of peers that exhibit similar de-
livery delays relative to the broadcast media server. This increases
the likelihood of data availability in a neighbourhood thereby reduc-
ing the playback latency and the frame freeze frequency of the media
presentation at the peers. These improvements also result into a cor-
responding gain in video quality for the reconstructed presentation.
In addition, we design a receiver-driven algorithm for requesting me-
dia packets from neighbouring peers that takes into consideration
the packets’ delivery deadlines and importance for the reconstruc-
tion quality of the media presentation. Furthermore, the popularity
of a packet within a neighbourhood is also included in the decision
mechanism that is part of the algorithm in order to help the dissem-
ination of less frequently encountered data units. Finally, we design
a bandwidth sharing procedure that distributes a peer’s upload band-
width among its requesting neighbours in proportion to their own
data rate contribution to this peer. Hence, a free-rider is effectively
shut down from receiving any useful data from its neighbours, as its
rate contribution to them would typically be non-existing.

To our knowledge, the most closely related contemporaneous
works are the following. In [4], the authors design a global pattern
for content delivery in mesh-based overlays that can utilize the up-
load bandwidth of most of the peers. In addition, a sweet range for
the peers’ degree is identified that maximizes the deliveredquality
to the individual peers in the scenario under consideration. Further-
more, the work in [5] shows how the buffer maps that peers in mesh-
based overlays construct in order to facilitate exchange ofdata with
their neighbours can be used to monitor the network-wide quality of
the media presentation shared among the peers. Finally, [6]proposes
to use layered video for providing incentives in P2P live streaming.
In particular, video packets are requested from neighboursin priori-
tized order based on their layer index and the probability ofserving
a neighbour is commensurate to the rate contribution received from
this neighbour.

2. MINIMUM DELAY MESH CONSTRUCTION

The key idea of the technique described here is to organize the peers
in neighbourhoods featuring similar delays from the media server for
all their members. Specifically, we desire to construct a neighbour-
hood such that every peer in it will exhibit a roughly equal latency in
receiving the media packets sent by the server originally. This will
increase the likelihood of having the peers in a neighbourhood being



interested in obtaining content from one another. That is because
the sliding windows used to exchange content with other peers (see
Section 3.1) will be positioned more or less at the same location rel-
ative to the time line of the media presentation. At the same time,
this feature will contribute to a lower likelihood of a framefreeze
during playback. This is the situation where a video frame isnot
received/decoded by a peer by the time it is due to be displayed.
Hence, the peer freezes the last displayed frame on the screen in or-
der to conceal the loss of this (present) frame. As the peers have
bigger prospects for querying data from their neighbours now, the
chance of encountering frame freeze during playback decreases. Fi-
nally, another advantage of such a neighbourhood is shorterplayback
start of the media presentation at a peer. In particular, as data sharing
among the members of a neighbourhood is increased, the time that
it takes for a peer to acquire the necessary amount of data in order
for playback to start is reduced. In the remainder of this section, we
describe in detail the proposed mesh construction approach.

There is a registry server that keeps track of the peers already
in the network. For each peer the server maintains an entry com-
prising the peer’s IP address and the minimum delay that thispeer
measures with respect to the media server. The nature of thissecond
quantity will become clear as we proceed with the discussionhere.
The registry server maintains a sorted list of the registered peers in
increasing order based on their minimum delays.

A connect procedure for a peer joining the network comprises
the following steps. The peer contacts the registry server providing
it its IP address. In return, the server provides the sorted list of peers
that the connecting peer can use to establish its own neighbourhood
in the network. Specifically, the peer begins to contact the nodes in
the network starting from the head of the list, checking for the fol-
lowing two quantities. The peer wants to know if the contacted node
can accept a new neighbour1. At the same time, the peer measures
the network delay from the node, based on the data rate that the node
is willing to spend on sending packets to the peer. Once the peer has
a sufficient number of nodes willing to accept it as their neighbour,
the peer creates its own neighbourhood with these nodes. At the
same time, the peer provides to the registry server its own minimum
delay entry which the peer computes as follows. The peers adds the
delay it has measured from a neighbour to the minimum delay value
for that neighbour from the sorted list provided by the registry server.
The smallest of these values for the neighbourhood of the peer is re-
turned to the registry server2. This concludes the connect procedure
for a peer.

In Figure 1, we show an illustration of a mesh constructed using
our procedure. Going top to bottom, we can see that the delay that
the nodes experience from the media server increases. Still, nodes
within a neighbourhood, denoted in dashed ellipses in Figure 1, ex-
hibit similar latencies in receiving media packets issued by the server
earlier, which in turn increases their collaboration in delivering these
packets to one another, as argued previously. Please note that for
clarity we do not include in Figure 1 every connection between the
nodes in the network.

Periodically, the nodes can check if their minimum delays have
changed. This can happen as the data rates at which they receive
data from their neighbours can change over time. Hence, a node can
update then its minimum delay value stored with the registryserver.

1Recall here that the nodes usually maintain a bound on the number of
neighbours that they are willing to accept in order not to overwhelm their
resources by the demanding/requesting neighbours.

2We assume that all the latency between two nodes in the network oc-
curs at their access points. Hence, a joining node always measures a smaller
overall delay to the media server through a node higher in thesorted list.

delay

Fig. 1: An example of a minimum delay mesh construction. Peers
are represented as small circles and neighbour nodes featuring simi-
lar delivery delays are grouped in sets (ellipsis). The later are orga-
nized further along increasing latency.

At the same time, the node informs its neighbours that its ownmin-
imum delay has changed so that they can revaluate in turn and if
needed the minimum delay values for their respective neighbour-
hoods. Note that the case of departure of one or multiple neighbours
is covered with the above consideration as then the data rate(s) of the
departed neighbour(s) to a node would also change (become zero).
Lastly, a departing node can inform the registry server of its decision
so that its registry entry can be removed.

3. SCHEDULING FRAMEWORK

3.1. Receiver-Driven Packet Requests

Each peer maintains a sliding window of data units that periodi-
cally advances. A peer buffers the already received data units from
this window, while it seeks to request the rest of them from its
neighbours. Peers periodically exchange maps describing the pres-
ence/absence of data units from their windows. In this way, apeer
can discover the presence of missing data units in the neighbour-
hood.

More formally, letW denote the set of data units in the current
sliding window at peern and letM ∈ W denote the subset of miss-
ing data units fromW that the peer can request from its neighbours.
For each data unitl ∈ M , the peer computes its augmented impor-
tance asIl · Pl(k, N) · U(t, td,l), wherek is the number of peers
in the neighbourhood ofn from which this data unit is available and
N is the size of the neighbourhood ofn in number of peers. Fur-
thermore,Il is the importance of the data unit for the reconstruction
quality of the media presentation [7], whilePl(k, N) is the popular-
ity factor of data unitl in the neighbourhood of peern. In essence,
Pl(k, N) is a monotonically decreasing function of the ratiok/N
and is used to place greater emphasis on data units less frequently
encountered among the peers in order to alleviate their dissemina-
tion within the network. Similarly,U(t, td,l) denotes the urgency of
receiving this data unit by peern, wheret is the current time, and
td,l is the delivery deadline forl, as introduced earlier.U(t, td,l) is
a monotonically increasing function of the ratiot/td,l and is used to
place priority on data units due to be received and decoded sooner in
the future.

The data units fromM are sorted in decreasing order based on
their augmented importance values. Peern then requests the data
units fromM in that order starting from the head of the sorted list.
For each data unit to be requested,n considers selecting the neigh-
bour from which this data unit would be delivered fastest such that
its delivery deadline would not be exceeded. In particular,let l be the
next data unit to be requested from the sorted list. Noden computes



the probability of receivingl from each of the neighbours that has it,
and ranks them in decreasing order based on it. If the first entry in the
ranked list has a non-zero probability of delivering the data unit to
n, the node then selects the corresponding peer neighbour andsends
it a request forl. Otherwise,n does not request this data unit and
proceeds to the next entry in the sorted list of data units to be consid-
ered for requesting. It should be noted that computing the probability
of receiving a data unit from a peer involves not only the statistical
properties of the communication channels (forward/backward) be-
tweenn and that peer, but also the number of pending requests from
n to which the peer has not responded yet.

3.2. Download Rate Estimation and Peer Replacement

A peer periodically estimates the respective download rates from its
neighbours. This is done by computing the total amount of data re-
ceived from each neighbour since the last time the download rate was
computed. In this way, a peer can sort its neighbours based ontheir
send rate contributions to this peer. Then, the peer can periodically
replace the least contributing neighbour with a new peer selected us-
ing the procedure described in Section 2. Furthermore, if the peer
experiences multiple neighbour nodes with no rate contribution, it
will simultaneously replace all of them with newly selectedneigh-
bours. The replaced nodes in this latter case will typicallyrepresent
free-riders that are not interested in sharing their resources with other
nodes in the network.

3.3. Sender Upload Bandwidth Sharing

The algorithm for sharing the upload bandwidth of a peer among
its requesting neighbours operates as follows. LetUBn be the up-
load bandwidth of noden, and letPRn denote the set of neigh-
bours from whichn has pending requests at present. Then, to ev-
ery nodek ∈ PRn, n allocates the share of its upload bandwidth
rn,k = (r̃k,n/

∑
k∈PRn

r̃k,n)UBn, wherer̃k,n denotes the present
estimate of the sending rate fromk to n. Hence, nodes that con-
tribute more of their sending rate ton will receive in return a larger
share of its own upload bandwidth.

4. EXPERIMENTS

In this section, we examine the performance of the proposed frame-
work for streaming actual video content. In the simulations, we em-
ploy the common test video sequenceForeman in CIF image size
encoded at 30 frps using a codec based on the scalable extension
(SVC) of the H.264 standard [8]. The content is encoded into four
SNR-scalable layers, with data rates of 455 kbps, 640 kbps, 877
kbps, and 1212 kbps, respectively. The corresponding videoquality
of the layers is 36.5 dB, 37.8 dB, 39.1 dB, and 40.5 dB, respec-
tively, measured as the average luminance (Y) PSNR of the encoded
video frames. The group of pictures (GOP) size of the compressed
content is 30 frames, comprising the following frame type pattern
IBBPBBP..., i.e., there are two B-frames between every two Pframes
or P and I frames. The 300 frames of the encoded sequence are con-
catenated multiple times in order to create a 900 second longvideo
clip that is used afterwards in our simulations.

The P2P network in the experiments comprises 1000 peers, out
of which 5% are free-riders, while we distribute the rest in two
categories: cable/dsl peers and ethernet peers, in the ratio 7:2.5. The
upload bandwidth for ethernet and cable/dsl peers is 1000 and 300
kbps, respectively, while the corresponding download bandwidth
values for these two peer type categories are 1500 kbps and 750

kbps. The downlink data rate for free-riders is set to 1000 kbps. The
content is originally stored at a media server with an uploadband-
width of 6 Mbps. The play-out delay for the presentation is set by
the peers to 15 seconds. This is the initial amount of data that each
peer needs to accumulate in its buffer before starting the playback
of the presentation. The size of the sliding window introduced in
Section 3.1 for keeping track of data units at each peer is 30 seconds
of data. Sending requests to its neighbours is considered bya peer at
intervals of 1 sec. The contribution of each sending peer in terms of
data rate is measured by the receiving peer every 30 seconds of time.
The exclusion of the least contributing peer in a neighbourhood and
the consecutive selection of a new replacement neighbour isdone by
a peer every 30 sec.

The performance of the packet requesting algorithm from Sec-
tion 3.1 relative to existing schemes and the resilience of our frame-
work to the influence of free-riders were examined elsewhere[7].
Therefore, in this paper we focus on examining the additional im-
provement in performance that the mesh construction procedure
from Section 2 provides. In particular, we present the relative per-
formance gains of the Min Delay algorithm from Section 2 over
a standard Random mesh construction technique where each peer
selects its neighbours at random.

The metrics over which we measure performance are (i) frame
freeze duration and (ii) normalized play-out time. We describe them
in the following. Frame freeze duration is the percentage oftime
relative to the duration of the whole presentation during which a peer
experiences frozen video content on its display. Remember that this
happens whenever a video frame is not received and decoded bythe
peer by its decoding/delivery deadline. In order to compensate for
this, the peer conceals this frame with the last decodable frame that it
has in its buffer. The content of this latter frame is kept on the screen
(hence the name freeze frame) until a subsequent frame is decodable
and therefore ready to be displayed next.

Next, recall from earlier that a peer has a parameter denoted
play-out delay that is set ahead of time. As described previously,
this parameter corresponds to the amount of data that the peer needs
to buffer from the initial part of the presentation before the playback
actually starts at the peer. Typically, it would take a peer alonger
period of time than the actual value of its play-out delay parameter
to gather the necessary amount of data for the playback to start. Fur-
thermore, one can compute the absolute minimum of this quantity
based on the hop distance of a peer from the media server and the
data rate at which the server is streaming the presentation (typically
the encoding rate of the presentation). Hence, we define normal-
ized play-out time as the ratio of the actual time that a peer requires
to fill up its play-out buffer initially and the minimum valueof this
quantity, as described above.

First, in Figure 2 we compare the difference in frame freeze du-
ration experienced by the peers when each of the two mesh construc-
tion algorithms is used. Specifically, in Figure 2a we show the cu-
mulative distribution functions (CDF) of the frame freeze duration
for the three peer types in the case of random mesh construction,
while in Figure 2b we show the corresponding results for the case of
minimum delay mesh construction. It can be seen that by employing
the latter algorithm both ethernet peers and cable peers experience
a significant reduction in frame freeze duration. For example, now
90% of the cable peers experience frame freeze for not more than
5% of the time while the media presentation is playing at their ends,
relative to around 10% of the time for the case of random mesh con-
struction, as observed from the corresponding graphs in Figures 2b
and 2a, respectively. Similarly, when the minimum delay algorithm
is used none of the ethernet peers experience frame freeze longer



than 2 - 3 % of the time, compared to the case of random mesh con-
struction where 10% of these peers experience frame freeze in the
range 5 - 9 % of the time. Note that in both cases (a) and (b), theper-
formance of free-riders is quite degraded, which is in fact desirable
and is due to the send rate proportional uplink bandwidth sharing
scheme from Section 3.3.

0 10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x: Playback freeze duration (%)

C
D

F
(x

) 
=

 P
(x

 <
 X

)

Cumulative distribution of playback freeze duration for different peer types

 

 

free−rider
cable
ethernet

(a) Random

0 10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x: Playback freeze duration (%)

C
D

F
(x

) 
=

 P
(x

 <
 X

)

Cumulative distribution of playback freeze duration for different peer types

 

 

free−rider
cable
ethernet

(b) Min Delay

Fig. 2: Frame freeze duration (%) for different peer types and mesh
construction algorithms.

The reduction in frame freeze duration when the Min Delay al-
gorithm is used should result into a corresponding improvement in
average video quality observed by the peers. This is confirmed with
the graphs shown in Figure 3 that represent the distributionof video
quality for the different peer types in the case of (a) Randomand
(b) Min Delay. Here, video quality is measured as the averageY-
PSNR (dB) of the reconstructed video frames at each peer. It can
be seen that the performances of ethernet peers and cable peers have
improved as their CDF graphs are somewhat shifted to the right in
Figure 3a relative to those in Figure 3a for Random mesh construc-
tion. Furthermore, the performance of free-riders in both cases is
quite degraded and is due to the same reason explained earlier.

22 24 26 28 30 32 34 36 38 40 42
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x: Y−PSNR (dB)

C
D

F
(x

) 
=

 P
(x

 <
 X

)

Cumulative distribution of video quality for different peer types

 

 
free−rider
cable
ethernet

(a) Random

22 24 26 28 30 32 34 36 38 40 42
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x: Y−PSNR (dB)

C
D

F
(x

) 
=

 P
(x

 <
 X

)

Cumulative distribution of video quality for different peer types

 

 

free−rider
cable
ethernet

(b) Min Delay

Fig. 3: CDF of average video quality (Y-PSNR) for different peer
types and mesh construction algorithms.

Next, we study the differences in normalized play-out time for
a peer between random and minimum delay mesh constructions.In
Figure 4, we show the cumulative distribution functions of the nor-
malized play-out time for a peer for each of the two mesh construc-
tion algorithms. As expected, we can see from Figure 4 that when
our algorithm is employed the peers observe much shorter play-out
times which in turn improves their audio-visual experienceof the
media presentation. For example, for 90% of the peers the playback
of the presentation can start no longer than twice the presetplay-out
delay in the case of minimum delay mesh construction, compared to
about six times the preset play-out delay for the same percentage of
peers for random mesh construction.

0 2 4 6 8 10 12 14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x: Play−out time / min Play−out time

C
D

F
(x

) 
=

 P
(x

 <
 X

)

Cumulative distribution of normalized play−out time for different mesh constructions

 

 

Random
MinDelay

Fig. 4: CDF of normalized play-out time of a peer.

5. CONCLUSIONS

We have proposed a mesh-pull based P2P streaming framework.
The framework comprises three major building blocks. (i) Anover-
lay construction algorithm that creates peer neighbourhoods that ex-
hibit similar latencies from the media server across their member
nodes. (ii) An algorithm for requesting data from neighbours that
maximizes the video quality at the peer while taking into account
the popularity of the data units within the neighbourhood. (iii) A
technique for sharing the upload bandwidth of a sending peerthat
effectively marginalizes the influence of free-riding in the system.
Through experiments we examined the additional performance im-
provement that the mesh construction procedure provides relative to
a frequently employed scheme of selecting peer neighbours at ran-
dom. It is shown that significant reductions in frame-freezetime and
play-out delay can be achieved if peer neighbours are selected such
that they share common latency distance relative to the origin media
server.

6. REFERENCES

[1] PPLive, ,” http://www.pplive.com/.

[2] PPStream, ,” http://www.ppstream.com/.

[3] X. Zhang, J. Liu, B. Li, and T.-S.P. Yum, “CoolStream-
ing/DONet: A data-driven overlay network for efficient liveme-
dia streaming,” inProc. Conf. on Computer Communications
(INFOCOM), Miami, FL, USA, Mar. 2005, IEEE, vol. 3, pp.
2102–2111.

[4] N. Magharei and R. Rejaie, “Understanding mesh-based peer-
to-peer streaming,” inProc. Int’l Workshop on Network and Op-
erating Systems Support for Digital Audio and Video, Newport,
RI, USA, May 2006, ACM, pp. 56–61.

[5] X. Hei, Y. Liu, and K.W. Ross, “Inferring network-wide qual-
ity in p2p live streaming systems,”IEEE J. Selected Areas in
Communications, vol. 25, no. 10, pp. 1640–1654, Dec. 2007.

[6] Z. Liu, Y. Shen, S. Panwar, K. Ross, and Y. Wang, “Using Lay-
ered Video to Provide Incentives in P2P Live Streaming,” in
Proc. Workshop on Peer-to-Peer Streaming and IP-TV, Kyoto,
Japan, Aug. 2007, ACM SIGCOMM, pp. 311–316.

[7] J. Chakareski and P. Frossard, “Efficient video streaming in p2p
networks,” inProc. Conf. on Visual Communications and Image
Processing, San Jose, CA, USA, Jan. 2009, SPIE, to appear.

[8] ITU-T and ISO/IEC JTC 1, “Advanced video coding for
generic audiovisual services, amendment 3: Scalable videocod-
ing,” Draft ITU-T Recommendation H.264 - ISO/IEC 14496-
10(AVC), Apr. 2005.


