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ABSTRACT

Distributed video coding (DVC) is a recent paradigm which aims at
transferring part of the coding complexity from the encoder to the de-
coder. The performance of such a coding scheme strongly depends
on the capacity to estimate correlation at the decoder and, conse-
quently, on the side information quality. In this paper we consider a
multi-view DVC framework and propose a very efficient dense dis-
parity estimation technique for side information construction, based
on a variational formulation. The simulation results show that our
approach clearly outperforms the existing methods for inter-view
side-information generation.

Index Terms— Multi-view distributed video coding, disparity
estimation, side information

1. INTRODUCTION

DVC is a promising technique based on results from information the-
ory established in the 1970’s [1, 2] stating that one can achieve the
same coding performance by encoding two correlated sources inde-
pendently and decoding them jointly, as by encoding and decoding
them jointly. This would allow transferring part of the coding com-
plexity from the encoder to the decoder. For multi-view video coding
this is of particular interest, since cameras do not need to communi-
cate with the each others. Many applications could benefit from it,
such as video compression on mobile devices and video surveillance.
Several works have been conducted to apply this theory to practical
video coding, first for mono-view sequences, including [3], [4] and
[5] and then for multi-view video [6,7,8,9]. Our work fits within the
framework defined in [3, 4]. When applied to a single video source,
this method involves splitting the input video into two subsets, lead-
ing to two correlated sources: the key frames (KFs) and the Wyner-
Ziv frames (WZFs), which are then separately encoded and jointly
decoded. As presented in Fig.1, KFs are encoded and decoded us-
ing a classical Intra codec such as H.264 Intra. WZFs, on the other
hand, are first transformed (typically using Discrete Cosinus Trans-
form, DCT), quantized and then turbo-encoded. At the decoder side,
WZFs are estimated from already decoded KFs, and the estimation,
called Side Information (SI), is used as systematic bits and further
refined using the parity bits sent by the turbo-encoder.

A similar coding strategy can be applied in the case of multi-view
distributed video coding (MDVC). However, the presence of multi-
ple video sources adds one dimension to the problem, thus raising
new problems and potentially offering new solutions. Indeed, the
construction of the SI now aims at exploiting both inter-view depen-
dencies and temporal correlations. Many solutions in the literature
propose specific methods for inter-view estimation, such as the ho-
mographic methods [7, 8], which estimate the homographic trans-
formation between the views and use it to build the interpolation.

Other techniques exist, [6], but they suppose the use of a particular
frame disposition and they cannot be used with the scheme adopted
in this work (a quincunx repartition of KFs and WZFs in the time-
view space). Presently, one of the best and simplest techniques to
generate inter-view interpolation uses block-based estimation tech-
niques [6, 9], disparity vectors are estimated as the motion vectors,
i.e. assuming that the disparity is blockwise constant and finding
the best matching block. However, because this assumption does
not always hold and the estimated disparity field does not provide a
pixel-to-pixel mapping between left and right views, the interpolated
images usually have visible artifacts. While in the classical multi-
view video coding the cost of transmitting motion and disparity in-
formation prevented the expansion of dense (one vector per pixel)
estimation methods, in MDVC this information is estimated only at
the decoder, and therefore dense fields are not penalized compared
with block-based ones. Obviously, the finer the disparity estimation,
the better will be the generated SI.

In this paper, we adopt the previously described multi-view codec
and we propose a dense disparity approach to generate a high qual-
ity inter-view estimation by using the disparity estimation method
described in [10]. This method achieves good results compared with
state-of-the-art methods, such as graph cuts and belief propagation
based methods [10]. Based on a set theoretic framework, the pro-
posed algorithm allows to incorporate various convex constraints,
corresponding to a priori information, and yields disparity vectors
with theoretically infinite precision. To obtain a smooth disparity
field while preserving discontinuities, a total variation based reg-
ularization constraint is considered. The fusion of inter-view and
temporal estimations is further studied and comparisons with state-
of-the-art methods illustrate the gain of the proposed method.

The remaining of this paper is organized as follows: in Section 2,
we explain the proposed side information generation method, and
in Section 3, experiments ran on several multi-view test sequences
show the performance of the proposed approach. Conclusions and
future work directions are drawn in Section 4.

2. SIDE INFORMATION CONSTRUCTION

In this section, the side information estimation process for a WZF,
denoted by W, is presented. We assume that four key frames are
available for this estimation as presented in Fig. 2, which is possi-
ble in particular in the adopted frame repartition, i.e. a quincunx
repartition of KFs and WZFs in the time-view space ([11]). Two es-
timations are computed: the temporal estimation is an interpolation
between the previous KF, 71, and the next KF, T.;. A second es-
timation is generated using the KF of the left view, V;, and of the
right view, V;., as detailed in Section 2.2. The two estimations are
then merged as explained in Section 2.3. The temporal estimation
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Fig. 1. DVC scheme.

Fig. 2. Side information generation for the WZF (W). Dashed ar-
rows: temporal estimation from the previous key frame, 71, and
the next key frame, 7. Plain arrows: inter-view estimation from
the left view, V;, and the right view, V..

method used in this work is the one proposed by Ascenso et al. in
[12]: after a temporal smoothing of the two reference frames, a clas-
sical block based forward motion estimation is performed between
the two neighboring KFs. The obtained motion vector field is further
refined by a bidirectional motion estimation to get symmetric motion
predictions from the two KFs. The motion vector fields are then fil-
tered with a weighted median filter, in order to eliminate the outliers
and to get a smooth solution. Note that this method, which will be
called MI in the sequel, has also been used for disparity estimation
[9]. In the next section, we propose a dense disparity estimation
method.

2.1. Dense disparity estimation method

Given a pair of stereo views, the dense disparity estimation problem
is to estimate a 2D displacement field by searching for every pixel
in the left view the corresponding pixel in the right view. When the
two views are parallel, the vertical component of the disparity vector
vanishes, so that only a scalar value has to be estimated. To estimate
the disparity u, we minimize the following cost function, based on
the sum of squared intensity differences:

To(w) = Y Viley) = Vile —ulz,y), ), (1)

(z,y)€ED

where D C N? is the image support. This expression is non-convex
with respect to the displacement field w. Thus, in order to avoid a
tough non-convex minimization problem, we consider a Taylor ex-
pansion of the non-linear term V;.(z —u, ) around an initial estimate
4 (which, in our method, is obtained by a correlation method illus-
trated in Fig. 3(c)) as follows:

Vr(l’—u,y)ZVT(x—ﬂ,y)—(u—fL) Vf(:l’—ﬂ,y), (2)

where V¥ (x — @,y) is the horizontal gradient of the warped right
image. Note that for notation concision, we have not made explicit
that » and @ are functions of (x, y) in the above expression.

With the approximation (2), the cost function .Jy under the min-
imization in (1) becomes quadratic in u. Thus, setting s = (x,y)
the spatial position in either image, the objective function to be min-
imized can be rewritten as:

J(u) = [L(s) u(s) — r(s)]? 3)
where seD
L(s) = VV(z — u(s), y)
r(s) = Vi(z —u(s),y) + u(s) L(s) — Vi(s).

Minimizing the objective function (3) aims at recovering the best
estimate of the disparity image u from the observed fields L and 7.
This inverse problem is ill-posed due to the fact that the components
of L may locally vanish. Thus, to convert this problem to a well-
posed one, it is useful to incorporate additional constraints mod-
elling prior knowledge and available information on the solution. In
this work, we address the problem from a set theoretic formulation,
where each constraint is represented by a convex set in the solution
space and the intersection of these sets, the feasibility set, consti-
tutes the family of possible solutions [10]. The aim then is to find
an acceptable solution minimizing the given objective function. A
formulation of this problem in a Hilbert image space H is therefore:

Find u € § = ("] Si such that .J (u) = inf J(S) , “4)
i=1
where the objective J : H — (—o00, +00] is a convex function and

the constraint sets (Si)lgigm are closed convex sets of H. Con-
straint sets can generally be modelled as level sets:

Vi€{17...,m}, SZI{UGHle(u)S(Sl}, 5)
where, for all ¢ € {1,...,m}, fi : H — R is a continuous convex
function and (d;)1<i<m are real-valued parameters such that S =
0?;1 Si £ 0.

To solve the disparity estimation problem within the set theo-
retic framework described above, we incorporate, in what follows,
the constraints modelling prior information on the estimated dispar-
ity field as closed convex sets of the form (5). The most common
constraint on disparity is the knowledge of its range of possible val-
ues. Indeed, disparity values are nonnegative and often have known
minimal and maximal amplitudes, denoted respectively by tmin > 0
and umax. The associated set is

81:{U€H|Uminéugumax}- (6)

Furthermore, in most stereo vision applications, the disparity map
should be smooth in homogeneous areas while keeping sharp edges.
This can be achieved with the help of a suitable regularization con-
straint. In this work, we make use of the total variation (tv) measure
which recently emerged as an effective tool to recover smooth im-
ages in various image processing research fields. Practically, tv(u)
represents a measure of the lengths of the level lines in the image.



Hence, if w is known a priori to have a certain level of oscillation so
that a bound 7 is available on the total variation, controlling tv(u),
restricts the solutions to the convex set

So={ueH|tv(u) <T7}. @)

The upper bound 7 can be estimated with good accuracy from prior
experiments and the considered minimization method is shown to be
robust with respect to the choice of this bound [10].

In summary, we formulate the disparity estimation problem as
the minimization of the quadratic objective function (3) over the fea-
sibility set S = NZ_,S;, where the constraint sets (S;)1<;<2 are
given by equations (6) and (7). Many powerful optimization algo-
rithms have been proposed to solve this convex feasibility problem.
For the current work, we employ the constrained quadratic mini-
mization method developed in [13] and particularly well adapted to
our needs. However, due to space limitation, we will not describe
the algorithm but the reader is referred to [10, 13] for more details.
To illustrate this method, we show in Fig. 3 the original WZF, the
initial disparity field % obtained by a correlation method, and the re-
sult of the algorithm. Note that the resulting disparity field u has real
values with infinite precision. This figure also contains the result of
the block-based estimation method proposed in [12].

2.2. Inter-view interpolation

After performing the disparity estimation between the two KFs of
the neighboring views, the inter-view interpolation follows the same
main steps as the temporal interpolation: the disparity fields cor-
responding to the WZF are estimated and used for a bidirectional
disparity compensated prediction of W. The prediction Wl , respec-
tively /WT, of W from the right, respectively, left view can thus be
written, for the pixel s, as:

Wi(s) = 7, <x _ %u(s),y) and W, (s) = Vi <x + 1u(s),y)
®

where V, and V; are the disparity compensated right and left views,
constructed by a B-spline interpolation. Then, the two interpolations

Wi and W, are merged. The fusion process consists in choosing
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Fig. 3. Disparity maps for the rectified “Book arrival” test sequence.

for each pixel the best estimation according to a mean absolute er-
ror criterion. We denote in the following this disparity interpolation
method by DI. In the ideal fusion (see Fig. 4(a)), the ideal fusion
decision mask, dr, using the original WZF, is computed as follows
for each pixel s:

_ [ 0 i [Wi(s) — W(s)| < [Wi(s) — W(s)
dis) = { 1, otherwise ©)

Obviously, this cannot be done in real conditions at the decoder but
will serve as lower bound for our fusion process. In the real fusion,
inspired by the work of Ouaret et al.[7], instead of the original frame,
the decision mask, dr, is estimated using the next frame 71 (see
Fig. 4(b)):

_ [0, i [Wi(s) — Tha(s)| < [Wis) — T4a(s))|
dr(s) = { 1, otherwise (10)

(a) Ideal fusion mask, d; (b) Real fusion mask, dr
Fig. 4. Fusion of the right and left disparity based interpolations for
lossless reference frames. Black and white indicate the selection of
the right, resp., left view.

The black and white values of the ideal mask in Fig. 4(a), which
correspond to the pixels selected respectively from W, and /Wl,
clearly illustrate the occlusion zones around the objects of the scene.
One can remark that the real fusion mask in Fig. 4(b) is quite sim-
ilar to the ideal one, and in particular correctly finds the occlusion
regions. Then, as presented in Tab. 1, even though the real disparity
interpolation does not attain the performances of the ideal one, it
outperforms the other existing methods by up to 2.5 dB. Indeed, the
compensation with the dense disparity field provides a more precise
SIfor W and better follows the true geometry of the scene, as shown
in Fig. 3.

Table 1. Inter-view estimation quality, in dB, for different methods
(KFs are H.264 intra coded), “Book arrival” test sequence, 512 X
386.

[ QP of the Key Frames [ Losses ] 31 [ 36 [ 40 |
PSNR of KFs oo [ 38.11] 34.71] 32.12
PSNR for homography 26.74] 26.81] 26.75] 26.65
PSNR for MI 31.65] 30.63] 30.45] 28.71

PSNR for DI (ideal fusion)
PSNR for DI (real fusion)

39.13| 37.49| 35.51| 33.68
35.26| 34.64| 33.02| 31.25

2.3. Fusion of temporal and inter-view estimations

At the decoder, we recall that two estimations are available for the
side information construction: the temporal and the inter-view in-
terpolation. The fusion problem is similar to the one previously de-
scribed. The ideal fusion chooses the best estimation pixel by pixel



exploiting the original WZF. In this case, for the real fusion step,
we did not choose the Ouaret method [7], which has quite low per-
formance when motion activity is too important (as for “Outdoor”
test sequence). The real fusion mask is build comparing Dy =
|T—1 — T'41] and Dy = |V, — V}|. In other words, when the motion
activity is too high, the corresponding pixel of the fusion is taken
from the inter-view estimation, and when the disparity is too high,
the pixel is taken from the temporal estimation. We have compared
the fusion of the motion interpolation method used for both tempo-
ral and inter-view correlation, as in [9] (denoted by MI+MI), and our
proposed method which consists of a fusion of the inter-view estima-
tion presented in Section 2.2 and the motion interpolation presented
above. This latter method is denoted by MI+DI and the comparison
results are presented in Tab. 2. One can see that the MI+DI method
leads to better side information than the classical MI+MI method.

Table 2. Side information quality, in dB, for different estimation
methods (KFs are H.264 Intra coded), “Book arrival” test sequence,
512 x 386.

| QP of the Key Frames | Lowes [ 31 [36 [40 ]
PSNR for MI+MI (ideal fusion) 42.51 | 37.56 | 34.70 | 32.24
PSNR for MI+MI (real fusion) 36.63 | 33.27 | 32.53 | 30.66
PSNR for MI+DI (ideal fusion) 46.49 | 38.60 | 35.38 | 32.79
PSNR for MI+DI (real fusion) 36.27 | 35.05| 33.27 | 31.34

3. EXPERIMENTAL RESULTS

In this section, we provide experimental results illustrating the cod-
ing performance of the proposed method. Experiments were run
on two geometrically rectified multi-view test sequences: “Book ar-
rival” and “Outdoor” [14]. For both sequences, the spatial resolution
was reduced to 512 x 386, and only the first 7 cameras were used.
The choice of minimal and maximal disparity amplitudes wmi, and
Umaz Was done by measuring the disparity at certain points of inter-
est selected manually. The bound 7 on the regularization constraint
So was fixed by calculating first the value of the associated con-
vex function on the initial disparity field and then choosing a fixed
ratio (20%) of this value. Rate-distortion curves for luminance com-
ponents, shown in Fig.5, confirm the results obtained in Section 2.
Note that, as all cameras play the same role and are equivalent (i.e.,
alternative coding of WZFs and KFs), the rate values correspond
to the average rate per camera. One can see that the dense dispar-
ity estimation enables the DI+MI to outperform the MI+MI method.
This shows that the dense disparity interpolation highly improves
upon the block-based estimation, providing complementary infor-
mation to the temporal estimation, in particular in the occlusion ar-
eas. However, for the “Outdoor” sequence, the real fusion mask is
quite noisy, and the motion activity very important. Therefore, “bad”
decisions will highly impact the final performance, which explains
the RD curve closer to the MI+MI one in Fig. 5(b).

4. CONCLUSION

In this work we have proposed a new approach for multi-view DVC,
which consists in using a dense disparity estimation method at the
decoder. In comparison with the classical block based techniques,
our method yields a better quality SI at the decoder, thus greatly im-
proving the global coding performances. Future work will focus on
proposing more efficient fusion methods in the multi-view frame-
work, and on the extension of the disparity estimation method to
non-rectified sequences.
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Fig. 5. Rate-distortion performance on two multi-view video test se-
quences (7 cameras, 384 x 512, 15 fps) for different side information
estimation methods.
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