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ABSTRACT
We study the spatial-temporal sampling of a linear diffusion
field, and show that it is possible to compensate for insuffi-
cient spatial sampling densities by oversampling in time. Our
work is motivated by the following issue often encountered in
sensor network sampling, namely increasing the temporal sam-
pling density is often easier and less expensive than increasing
the spatial sampling density of the network. For the case of
sampling a diffusion field, we show that, to achieve trade-off
between spatial and temporal sampling, the spatial arrangement
of the sensors must satisfy certain conditions. We provide in this
paper the precise relationships between the achievable reduction
of spatial sampling density, the required temporal oversampling
rate, the spatial arrangement of the sensors, and the bound for the
condition numbers of the resulting sampling and reconstruction
procedures.

Index Terms— Sampling, sensor network, diffusion pro-
cess, spatial-temporal sampling, super-resolution.

1. INTRODUCTION

A sensor network can be seen as a sampling device, taking
spatial-temporal samples of some underlying physical field of
interest. If our goal is to reconstruct the original field — or at
least a good approximation of it — then the important signal
processing questions to answer are where to take the samples
(i.e. spatial sensor placement), and when to take the samples
(i.e. temporal sampling instants).
While regular multidimensional sampling theory [1] is a well

developed field, it usually assumes homogeneity over the dimen-
sions, namely the dimensions are interchangeable (as in images
or volumetric data). However, in the case of physical field sam-
pling by sensor networks, the dimensions — space and time —
are specific and cannot be interchanged. For example, increas-
ing the spatial sampling rate is often much more expensive than
increasing the temporal sampling rate, since the former requires
the physical presence of more sensors in the network, whereas
the latter is, in theory, only constrained by the communication
capacity and energy budget of the network.
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In this work, we study the trade-off between the spatial and
temporal sampling densities for the specific problem of recon-
structing a field governed by the diffusion equation. Such mod-
els are widely used to characterize the spatial-temporal evolution
of various physical phenomena (e.g. temperature variation, and
the distribution of pollution plumes in the atmosphere).
By exploiting the spatial-temporal correlation offered by the

diffusion equation, we show that it is possible to reduce the spa-
tial sampling requirement by taking more samples along time.
In other words, we can use a sequence of spatially undersampled
and aliased measurements to reconstruct a field with higher spa-
tial bandwidth. Owing to its apparent similarity to the classical
super-resolution problem in image processing, we refer to the
proposed scheme as the spatial super-resolution reconstruction
of a diffusion field.
The rest of the paper is organized as follows. In Section 2,

we first briefly overview some relevant concepts on the diffu-
sion equation model, and then precisely state the spatial super-
resolution problem we want to address in this paper. We study
in Section 3 a general class of periodic nonuniform spatial ar-
rangements of the sensors, and provide precise relationships be-
tween the achievable spatial super-resolution factor, the required
temporal oversampling rate, spatial sensor arrangement, and the
bound for the condition number of the resulting sampling prob-
lem. We conclude the paper in Section 4. Due to space limita-
tions, we only present the main results in this paper, and leave
the proofs to [2].

2. PROBLEM STATEMENT

2.1. The Linear Diffusion Equation

Consider a field f(x, t)with one1 spatial variable x and one tem-
poral variable t, satisfying the following linear diffusion (heat)
equation

∂f(x, t)

∂t
= D

∂2f(x, t)

∂x2
, for x ∈ R, t > 0, (1)

where D is the diffusion coefficient. In the following discus-
sions, we set D = 1 by rescaling the time axis. We assume
that the sensor network starts observing the field at t = 0, by

1The results presented in this paper can be extended to cases with multiple
spatial variables.
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which time all sources that originally induced the field have dis-
appeared. Consequently, there is no external source term in the
homogeneous diffusion equation (1).
For any t > 0, the field f(x, t) satisfying (1) is completely

determined by the initial condition f(x)
def
= f(x, t = 0). De-

noting by f̂(ω, t) the spatial Fourier transform of f(x, t), we
have [3]

f̂(ω, t) = f̂(ω) e−ω2t. (2)

The above formula precisely characterizes the spatial-temporal
correlation of the field: for any t > 0, f(x, t) is just a filtered
version of the initial state f(x), with the filter being a time-
varying Gaussian kernel.

2.2. Problem Statement

Suppose that the initial state f(x) can be well-approximated by
a bandlimited function. Without loss of generality, we can as-
sume that the (essential) frequency domain support of f(x) is
[−π, π]. Denote by BL(π) the space of functions whose Fourier
transforms vanish outside of (−π, π).
We consider the following sampling setup, where we place a

sequence of sensors at spatial locations

X
def
= {xn : n ∈ Z} .

Each sensor takesK ≥ 1 measurements at instants{
k − 1

K
τ : 1 ≤ k ≤ K

}
,

where τ/K is the uniform sampling interval along time. Note
thatK = 1 corresponds to the case of pure spatial sampling.
We define the corresponding sampling operator AX ,K to be

the linear mapping from any function f(x) ∈ BL(π) to a se-
quence of spatial-temporal measurements, i.e.,

(AX ,Kf)n,k
def
= f(xn,

k − 1

K
τ), n ∈ Z, 1 ≤ k ≤ K.

Our goal is to study the conditions onX andK such that any
function f(x) ∈ BL(π) can be perfectly reconstructed from its
samples AX ,Kf . Clearly, in that case, a necessary condition is
that the sampling operator AX ,K must be an invertible or one-
to-onemapping. However, in practice, stronger requirements are
needed: we want to be able to reconstruct f(x) in a numerically
stable way from AX ,Kf . To guarantee such an algorithm exists,
we need to ensure that ifAX ,Kf1 is “close” toAX ,Kf2 then f1 is
“close” to f2 as well. Furthermore, we want that a small change
in the signal f only produces a small change in its sampling data
AX ,Kf . These requirements motivate the following condition
on the sampling operator [4].

Definition 1 (Stable sampling) We call AX ,K a stable sam-
pling operator if there exist constants 0 < α ≤ β < ∞ such
that for every f ∈ BL(π),

α‖f‖2
L2 ≤ ‖AX ,Kf‖2

�2 ≤ β‖f‖2
L2. (3)

We call α and β stability bounds and the tightest ratio κ = β/α
provides a measure of the stability of the sampling operator.

We can see that stable sampling implies that AX ,K is invert-
ible, whereas the reverse is not necessarily true.
Let s(X ) denote the ratio between the Nyquist density of the

field f(x) and the “average” spatial density of a particular sen-
sor arrangement X . For example, in the case of uniform sensor
arrangement, i.e., X = {nd : n ∈ Z} for some d > 0, we have
s(X ) = (π/π)/(1/d) = d. Note that for an arbitrary X , the
proper definition of its “average” density can be rather techni-
cal [4]. We defer the precise definition of s(X ) to Section 3,
where we focus on a particular class of nonuniform arrange-
ments, whose densities can be easily calculated.
In this work, we are only interested in cases when s(X ) > 1,

since otherwise the sensor network would have enough spatial
density (as compared to the Nyquist density) and the field re-
construction problem can be directly solved by a spatial-only
sampling scheme (i.e. K = 1). Intuitively, when s(X ) > 1,
this quantity indicates how spatially “undersampled” our sensor
network is, and — in the case of still being able to perfectly re-
construct f(x) — the spatial “super-resolution factor” we can
achieve.
The focus of this paper is to study and answer the following

questions.
1. Is it possible to find some X and K such that s(X ) > 1
and yet AX ,K is still a stable sampling operator?

2. If so, what is the largest spatial super-resolution factor
s(X ) we can achieve?

3. What kind of sensor arrangement X will allow us to
achieve spatial super-resolution?

2.3. The Limitation of Uniform Sensor Arrangement

To see why we need to consider the last question listed above,
we study here the case of uniform sensor arrangement, and show
a somewhat surprising result.

Proposition 1 Suppose that we put the sensors uniformly along
space, i.e., X = {nd : n ∈ Z} for some d > 0. If

s(X ) = d > 1,

then the sampling operatorAX ,K is unstable for arbitraryK ≥
1.

In other words, for uniform sensor arrangement, it is impos-
sible to achieve spatial super-resolution (s(X ) > 1), no matter
how many temporal samples we take.
The result of Proposition 1 can be intuitively understood by

considering the initial state of the field to be f(x) = sin(πx/d).
When d > 1, its Fourier transform

f̂(ω) = πj
(
δ(ω +

π

d
) − δ(ω −

π

d
)
)

is supported within (−π, π). It follows from (2) that

f̂(ω, t) = πj
(
δ(ω +

π

d
) − δ(ω −

π

d
)
)

e−ω2t

= πj
(
δ(ω +

π

d
) − δ(ω −

π

d
)
)

e−(π/d)2t

= f̂(ω) e−(π/d)2t,
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and thus f(x, t) = e−(π/d)2t sin(πx/d). Consequently, one can
verify that f(nd, t) = 0 for all n ∈ Z and t ≥ 0. In other
words, there exists a nonzero function f(x) from BL(π) such
that AX ,Kf = 0, and hence the sampling operator is not in-
vertible. A catch in the above discussion though is that f(x) =
sin(πx/d) does not have finite energy as required in (3). We
leave the formal proof of Proposition 1 to [2].

3. PERIODIC NONUNIFORM SENSOR
ARRANGEMENT

3.1. General Conditions on Stable Sampling

The previous example shows that a uniform sensor arrangement
cannot “see” the signal f(x) = sin(πx/d), since the sensor loca-
tions match exactly with the zero crossings of f(x). Intuitively,
one might be able to avoid such situations by introducing certain
“nonuniformity” to the set X .
In this paper, we focus on a particular class of nonuniform

sensor arrangement, in which X consists of a union of L ≥ 2
different uniform patterns, each shifted by a distance ξ�. More
specifically,

X = {ξ� + nd : n ∈ Z, 1 ≤ � ≤ L} (4)

for some d > 0 and 0 ≤ ξ� < d. In this case, the average
density of X is L/d, and hence s(X) — the ratio between the
Nyquist density of the field and the average sensor density —
can be calculated as

s(X) =
d

L
.

Let {yk,�[n] = f(ξl + nd, (k − 1)τ/K)}n∈Z
denote the set

of samples taken by the �th shifted lattice, at time instant (k −
1)τ/K . Applying the classical sampling formula in the Fourier
domain (as obtained from the Poisson summation formula), we
can write

ŷk,�(ω)
def
=

∑
n∈Z

yk,�[n]e−jω(nd+ξl)

=
1

d

∑
m∈Z

f̂(ω + mc)e−(ω+mc)2(k−1)τ/Kejξlmc, (5)

where c
def
= 2π/d.

We make two observations about the equality in (5). First,
ŷk,�(ω) is a periodic function of ω, and thus we only need to
consider its values within one period, e.g., [0, c). Second, since
f̂(ω) is bandlimited to (−π, π), then for any given ω, the sum-
mation on the right hand side of (5) only involves a finite number
of nonzero terms. In fact, denoting byM(ω) the set of all indices
m such that |ω + m| < π, we can show that

max
ω

|M(ω)| = �d	,

where �d	 is the smallest integer greater than or equal to d.
Let mi(ω) (i = 1...|M(ω)|) be the ith element in M(ω).

We first introduce the following two matrices: W (ω) is an L ×
|M(ω)| matrix with entries

{W (ω)}�,i
def
= ejξ�mi(ω)c,

and D(ω) is a diagonal matrix whose ith diagonal element is
equal to

{D(ω)}i,i
def
= e−(ω+mi(ω))2τ/K , for i = 1...|M(ω)|.

The relation in (5) can now bewritten as a compact matrix-vector
multiplication in the Fourier domain

ŷ(ω) = GX ,K(ω) f̂ (ω),

where ŷ(ω) is an LK × 1 vector formed by ŷk,�(ω) in lexi-
cographic order (i.e. ŷ(k−1)L+�(ω) = ŷk,�(ω)), f̂ (ω) is an
|M(ω)| × 1 vector with f̂ i(ω) = f̂(ω + mi(ω)), andGX ,K(ω)
is a block matrix formed byW (ω) andD(ω) as follows⎛

⎜⎜⎜⎝
W (ω)D0(ω)

W (ω)D1(ω)
...

W (ω)DK−1(ω)

⎞
⎟⎟⎟⎠ . (6)

The matrix GX ,K(ω) defined above contains all the infor-
mation about the sampling operator AX ,K . As shown in the fol-
lowing proposition, we can check the stability of the sampling
operator by studying the properties ofGX ,K(ω).

Proposition 2 The sampling operator AX ,K is stable if and
only if

0 < α∗
def
= ess inf

ω
σmin

(
G∗X ,K(ω)GX ,K(ω)

)
/d

≤ β∗
def
= ess sup

ω
σmax

(
G∗X ,K(ω)GX ,K(ω)

)
/d < ∞,

(7)

where σmin(·) and σmax(·) represent the smallest and largest
eigenvalue of a matrix, respectively.

An immediate consequence of Proposition 2 is that, for
AX ,K to be stable, the matrix GX ,K(ω) must have full column
rank for almost all ω. This observation leads to the following
bound between the number of temporal samples K and the
achievable spatial super-resolution factor s(X ).

Corollary 1 If AX ,K is a stable sampling operator, then

K ≥

⌈
maxω |M(ω)|

L

⌉
= �s(X )	 .

The above result is intuitive: if our sensor network is roughly
P -times undersampled in space, then for stable reconstruction,
we must perform at least P -times oversampling in time as com-
pensation.

3.2. Theoretical Achievability of Spatial Super-Resolution

Next, we show that spatial super-resolution can indeed be
achieved by a wide class of spatial sensor arrangements.

Theorem 1 For arbitrary choices of d and L with s(X ) = d
L >

1, the periodic nonuniform pattern X as in (4) can lead to a
stable sampling operator, if the following two conditions hold.
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1. K ≥ �d	;

2. For any given integer N with 1 ≤ N < d, there exist ξ�

and ξn such that |ξ� − ξn| 
= md/N for allm ∈ Z.

Note that the first condition is easy to satisfy — we just need
to take enough temporal measurements. The second condition
in Theorem 1 (a special case of this condition was first proposed
in [5] for bounded spatial domains) poses certain constraints on
the geometry of the spatial pattern X . Our next result shows that
these constraints are in fact almost always satisfied.

Proposition 3 Consider arbitrary choices of the shift vector
ξ = (ξ1, ξ2, ..., ξL)T ∈ [0, d)L. The set of those vectors that
do not satisfy the second condition in Theorem 1 has Lesbegue
measure zero.

Combining the results of Theorem 1 and Proposition 3, we
can reach the following conclusion: it is possible to achieve
an arbitrary spatial super-resolution factor with stable recon-
struction, as long as we take enough temporal samples such
that (s(X ), K) falls inside the dark-gray region of Figure 1.
The suitable spatial arrangement of the sensors can be obtained,
with probability one, by randomly drawing (ξ1, ξ1, ..., ξL)T ac-
cording to any continuous probability distribution defined on
[0, d)L.

3.3. Practical Achievability of Spatial Super-Resolution

While theoretically very promising, the above message has to be
taken with a grain of salt. Note that for stable sampling, Theo-
rem 1 only requires that the condition number κ = β/α to be
finite. In practice, however, the actual value of the condition
number makes a big difference in terms of noise amplification
and numerical stability, which consequently puts a limit on the
achievable spatial super-resolution factors.
Motivated by the above argument, we study the following

more practically relevant question. Given a maximum allowable
condition number, what are the corresponding achievable spatial
super-resolution factors? While it is generally difficult to ex-
plicitly compute the exact stability bounds as defined in (7), we
derive the following useful estimate.

Theorem 2 The condition number of the sampling operator
AX ,K is lower bounded by the following quantity:

κ =
β

α
≥ max

N=1,2,...(�d�−1)

1 + |
∑L

�=1 ej2πξ�N/d|/L

1 − |
∑L

�=1 ej2πξ�N/d|/L
. (8)

We can show that, for fixed L, the above lower bound is an
increasing function with respect to the spatial super-resolution
factor s(X ). Consequently, given a certain “budget” on the con-
dition number, we can use (8) to find an upper bound for the
achievable super-resolution factors that stay within the “bud-
get” [2].

spatial super−resolution

unachievable

achievable

K

s(X )
1

2

3

4

5

6

1.0 2.0

Fig. 1. Any choice of the spatial super-resolution factor s(X )
and temporal sample number K in the dark-gray region is
achievable with stable sampling. By contrast, any combination
in the light gray region is unachievable, as a result of Corollary 1.

3.4. Reconstruction Algorithms

Up to now, we have only discussed the stability of the sam-
pling operator, without mentioning the actual reconstruction al-
gorithms. Using the techniques of multichannel sampling and
reconstruction developed in [6], we can show that, in the case
of stable sampling, the original continuous field can be perfectly
reconstructed from its samples via a sequence of filtering opera-
tions. We leave the details to [2].

4. CONCLUSION

We studied the trade-off between the spatial and temporal sam-
pling densities of a sensor network for the reconstruction of a
linear homogeneous diffusion field. We show that it is possible
to achieve an arbitrary spatial super-resolution factor with stable
reconstruction, as long as we take enough temporal samples and
that the spatial arrangement of the sensors satisfies certain condi-
tions. We also provide a useful bound for determining the prac-
tically achievable super-resolution factors for a given maximum
allowable condition number. As an important area of further re-
search, we are investigating ways to extend the current work to
the more general inhomogeneous case, i.e., the sampling and re-
construction of a diffusion field driven by an unknown spatially
and temporally varying source.
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