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MIMO decoding based on stochastic

reconstruction from multiple projections

Amir Leshem? and Jacob Goldberger

Abstract

Least squares (LS) fitting is one of the most fundamentalniecies in science and engineering. It
is used to estimate parameters from multiple noisy obsenstin many problems the parameters are
known a-priori to be bounded integer valued, or they comenfeofinite set of values on an arbitrary
finite lattice. In this case finding the closest vector becoB-Hard problem. In this paper we propose a
novel algorithm, the Tomographic Least Squares DecodeSD)l_that not only solves the ILS problem,
better than other sub-optimal techniques, but also is dapaibproviding the a-posteriori probability
distribution for each element in the solution vector. Thgoathm is based on reconstruction of the
vector from multiple two-dimensional projections. The jeations are carefully chosen to provide low
computational complexity. Unlike other iterative techunég, such as the belief propagation, the proposed
algorithm has ensured convergence. We also provide sietukatperiments comparing the algorithm to

other sub-optimal algorithms.

Index Terms

Integer Least Squares, Bayesian decoding, sparse linaatiegs. MIMO communication systems.

. INTRODUCTION

A multiple-input-multiple-output (MIMO) system is a commigation system withl transmit antennas
andp receive antennas. The tap gain from transmit antérioareceive antenng is denoted byH;;. In
each use of the MIMO channel a signal vecios (sq, ...,sd)T is independently selected from a set of
constellation points4 according to the data to be transmitted, so tat.4%. The received vectox is
given by:

x=Hs+n (1)
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The vectom is an additive noise in which the noise components are assameero mean, statistically
independent Gaussians with a known varianée The channel matrix which is assumed to be known,
comprises i.i.d. elements drawn from a (circularly symioetero-mean complex) normal distribution of
unit variance. In the case where the MIMO linear system isgleravalued we use the standard method
to translate it into an equivalent double-size real-valtggiesentation that is obtained by considering the
real and imaginary parts separately. The MIMO detectiomblerm is then becomes finding the transmitted

vectors givenH andx. The optimal maximum likelihood (ML) solution is:
§ = in [|Hs — x|? 2
s = arg min |[Hs — x|| 2)

However, ML decoding has exponential computational comifylevhich makes it unfeasible when either
the number of transmitted antennas or the constellatiom aie large. Actually, for a generHtl, it is
known to be NP-HARD both in the worst-case serise [1] as welhdbe average sensel[2]. It can be
easily verified that the MIMO ML detection problem is equimal to a least square lattice search problem
that is known to be NP hard. A simple approximation is the Zeroing (ZF) algorithm which is based

on a linear decision ignoring the finite constellation coast:
§=(HH)'H'x 3)

and then, neglecting the correlation between the symbaldingy the closest constellation point for each
symbol independently. This scheme performs poorly duestmibility to handle ill-conditioned channel
matrix realizations. Somewhat better performance can lairadd by using a minimum mean square

error (MMSE) filter instead of ZF on the un-constrained linegstem:

(H'H+0%)7'H 'x (4)

§

and then finding the closest lattice point in each comporesependently. A vast improvement over
the linear approach can be achieved by using sequentiadatecorlhis algorithm, known as MMSE
V-BLAST or MMSE-SIC, has the best performance for this fanaf linear-based algorithms. However,
there is a still a significant gap between the detection perdince of the MMSE-SIC algorithm and the
performance of the optimal ML detector. The complexity dfthese algorithms i€ (p?) wherep is the
number of receive antennas (we assuyme d). These algorithms can also easily provide probabilistic
(soft-decision) estimates for each symbol (or each bit).

Many alternative structures have been proposed to apprteehML detection performance. For
example, the sphere decoding algorithm [3], approachegutsie sequential Monte Carlo framework

[4] and methods based on semidefinite relaxation [5], [6)ehawccessfully been implemented. Although



the detection schemes listed above have significantly extlaomputational complexity, sphere decoding
is still exponential in the average case [7]) and semidefi@taxation is high-degree polynomial. Neither
of these approaches can be easily used in real-world haedavehitecture applications. Since these algo-
rithms find the closest point in the lattice, it is not straifdrward to compute a-posteriori probabilities

per symbol or per bit, which is required, when forward errorrection is used (e.g., in communication

applications), but it can be done with increased complexitthe sphere decoding proceduré [8]. Thus,
there is still a need for low complexity detection algorithithat can achieve good performance with
low-order polynomial complexity, that are capable of pding per-bit likelihood ratios.

In this paper we propose a novel iterative technique, whietdubTomographic Least Squares Decoder
(TLSD), that is based on 2D projections followed by iteratiptimization. The solution also allows us
to provide a-posteriori probability distributions to eduihof each variable, something desirable in coded
communication systems. Such probabilities are more casugld to evaluate using sphere decoding types
of solution.

The paper proceeds as follows. In Section 2 we present thgoped TLSD algorithm. Experimental

results are shown and discussed in Section 3.

Il. TOMOGRAPHICDECODING OFCONSTRAINED LINEAR SYSTEMS

In this section we present a novel polynomial time algoritfon solving the bounded integer least
squares problem. The algorithm outperforms other reduoetptexity algorithms with lower complexity.
The algorithm has two important steps. The first step is tating the problem into a set of two-
dimensional problems. The second step comprises of soltengtively the two-dimensional problems
by using data received from other two-dimensional probléFhss is very similar to tomographic imaging,
where an object is reconstructed from its projections orelesimensional subspaces. Hence we dub it
Tomographic Least Squares Decoder (TLSD). The difference is that our object is discrete, anel diata
that is shared among the projections consists of probahlgtributions. The second step can also be
interpreted as an instance of the incremental EM algori®jmThis will allow us to prove the convergence

of the algorithm.

A. The two-dimensional projections

Our approach can be viewed as a combination of a two-dimeakgeneralization of the ZF solution

with optimal solution of the 2D subsystems obtained by thléaagalization.



Let hy,...,h; be the columns oH and for eachl <i<j<d let A;; be the matrix obtained frorrl
by removing bothi-th andj-th columns. It can be easily verified that the transfornmatio

Py =1 —Ay(A A A, (5)

v

is an orthogonal projection into the complement of the suéee spanned byh|k # i, j}. Hence

PinS = Pij Z hksk = P,-jhis,- + Pijhij (6)
k
Applying the linear transformatio?;; on both sides of the equatidds + n = x, yields a set ofp

equations that depends only on the two variaBleands;:
Pijh;s; + Pi;hjs; + Pjn = P;;x (7)
Using the simplifying notationH;; = P;;[h;, h;], n;; = P;;n andx;; = P;;x, Eq. (1) can be written as:
Hijlsi, sj]T +n;; =X (8)
wheren;; ~ N(0,0°P;;). The density function ok;; is:

1 1
fij(xij%susj)ZWGXP(—@HX@' Hijlsi, 55 11%) 9)

Note that this is a two dimensional density function sinoe Wectorx,; belongs to a two dimensional
subspace spanned IBy;h; andP;;h;. Furthermore, the orthogonal projection of an isotropici&an
variable is still isotropic in the projected space.

We have converted the original linear system ||@()) systems of sparse linear equations. If we take
only non-overlapping projections (e.Bi2, P34, ..., P41,4) and solve the corresponding linear systems, it
can be easily verified that we get exactly the linear ZF sotutOur approach is based on takialg the
(g) sparse systems. Due to the overlap between the projeceéanh, of the solvers of the sub-problems
provides information to the other solvers.

Ignoring the noise correlation between equation sets dtaby different projections, the likelihood

function of s € A%, based on the sparse linear systems:

Hij[si,sj]T + Ny = X5 , 1§Z<]§d (10)
is:
s) = [ ] £ij (s 5. 55) (11)
1<J
1 2
(2770'2) exp(— 252 ZHXZJ Hij 32733] 17)

1<j



Note that f(x;s) is not the precise likelihood function since we ignore thésaccorrelation between
equations derived from different projections. Note howekat all pairwise correlations are still captured
by the relevant 2-D subproblems, so basically we only givenoise correlations of order 3 and higher.
Our goal now is finding the maximum-likelihood solution ofthew system$ = arg maxg f(x;s).
In the next section we present an iterative method for matigif (x;s). The main point of this paper
is that by applying the 2D projections we shift from the anigi likelihood function into a very similar
function that is much easier to optimize. The sparsity ofriber system makeg(x;s) a much smoother
function than the original likelihood function. This smbogss enables applying an effective iterative
search. A similar situation occurs in LDPC codes$[10] whdre sparsity of the parity-check matrix

results in a smooth likelihood function.

B. Iterative solution of the sparse problem

We have now converted the original linear system, @)) sets of sparse equations. The second step
of our approach comprises of solving iteratively the twoensional problems by using data received
from other two-dimensional problems.

Given an a-priori probability vector fos;, s; we can now easily usg;; to update these probabilities
in a locally optimal way. Assume that for eatk- 1, ...,d we have an a-priori probability distribution on
s; i.e., probability vector®; = (6;(1), ...,6;(M)), whered;(k) = p (s; = ai), where A = {ay, ...,aprs } IS
the finite symbol set. Giver;; we can compute the a-posteriori probability fors; denoted byo7, 67

respectively and given by

08 (k) o< 04( Ze Dij(ay, ar) (12)

07(€) oc O5( ZH D;j(ak, ar)

where

D;j(ak, ar) = fij(Xij; ak, ar) (13)
1 1
= WGXP(—F”XU ”[ak,ag] H )
and the notationx indicates normalization of the vector to make it a distiidnot We can now iterate
the updates ob;,7 = 1, ...,d, by choosing at each iteration a new pak j and updatingd;, ;. It can

be shown that this is an instance of the EM algorithm.



To initialize the process we need a good choice of the aippiabability vectorsd;. This can be
done for example using a soft version of the ZF solution. Rebe the ZF one-dimensional orthogonal
projection into complement of the subspace spannedlyfk # i}. Then the initial parameter values
are:

1
0;(k) o eXp(—FHPihiak — Pix||?) (14)

C. The TLSD algorithm

To decode an integer LS problem we perform the following: Wst ftompute all the matriceld;.
This amounts tq$) QR factorizations for each< ;. This has complexity) (d?p*), but it is done once
in the beginning of the decoding process. Now for each receiectorx we first use a ZF receiver to
generate the a-priori probability distributiofs i = 1,...,d. This has complexity oD(p?), since the
main problem is the computation of the ZF receiver. Computhre priors isO(Md).

The next step is to compute for each two-dimensional vedt@oastellation points the metric using
equation[(IB). This has complexity 6f (¢>A1?). This is done once for each received vector. Now we go
over all vectorsk;; sequentially and updatg, 6; using [12). This is done until convergence is achieved,
typically with few iterations. The overall complexity @(MzNiter)- After convergence the we obtain
a-posteriori probabilities per symbol. A hard-decisiofusion is given by choosing for each=1, ..., d
the most probable symbol:

Si=arg max 0:(k) (15)

The algorithm-box in Table | summarizes the TLSD algorithirhe proposed TLSD algorithm is based
only on two-dimensional subspaces. It is straightforwarghtprove the algorithm by using projections on
higher dimensional subspace. This can have improved mesioce, and higher computational complexity.
Finally we compare the likelihood of the solution vectoriwihe likelihood of the MMSE-SIC solution

and choose the one with higher likelihood. It turns out thates these algorithms use different type of

information about the solution, that this improves the perfance, especially for low SNR situations.

I1l. SIMULATIONS

In this section we provide simulation results for the pragbsletector over various uncoded MIMO
systems. We assume a quasi-static fading channel with aeftemgth of 100. Under the assumption
of block-fading channel model, the channel matkxis constant for 100 channel uses. The channel

matrix comprised i.i.d. elements drawn from a zero-meamabdistribution of unit variance. We have



TABLE |

THE TOMOGRAPHICLEAST SQUARESDECODER(TLSD)

Input: An integer LS problemHs + n = x, a noise leveb?

and a finite symbol sefa1,...,an}.

Initialization:
Fori=1,...,d
initialize (6, (k) : ax € A) using zero-forcing[(14).

For each pail <: < j <d
Compute the projectio®;; using Eqg. [(5) and compute

Dij(ak, ae) = exp(— 5=z |Pij (x — hiax — hjas)|?) -

202

End

Do until convergence
Fori1<i<j<d
Update the distribution8;, 6;:
0:(k) o< 0i(k) 392, 0;(€) Dij(an, ac)

0;(£) o 0;(€) =32, 0i(k) Dij (a, ar)
End
End
Fori=1,...,d

Chooses; = arg maxy, 0; (k).

used 10,000 realizations of channel matrix. This resultsOfhvector messages. The SNR is defined as
10log,(Ep/No) Where Ey, is the average received energy per symbol at each receitemran

Fig. 1 shows the symbol error rate (SER) versus SNR fox 8 BPSK MIMO system. The performance
of the TLSD method is compared to ML detection and to othexdmsuboptimal algorithms: the linear
MMSE and the sequential MMSE V-BLAST. In all our experimetits number of TLSD iterations was
limited to 10. It can be seen that the TLSD algorithm is sigaifitly better than the MMSE-SIC at
the same computational complexity. Fig. 2 depicts simigsutts for al6 x 16 4-PAM MIMO system.

The TLSD decoder significantly outperforms the MMSE-SIC,ilevinaving comparable computational



complexity.

IV. CONCLUSIONS

Solving integer least squares problems is an importantl@molin many fields. We have proposed a
novel technique based on tomographic principle of recaotstm from projections. We showed that the
method always converges. Furthermore, the proposed méthodjood performance competitive to all
other polynomial algorithms for solving the problem as destmted in simulations. Finally the method
can be extended to provide a-posteriori probabilities fiefob use in coded communication systems or

combined with sphere decoding, to improve its performance.
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