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MIMO decoding based on stochastic

reconstruction from multiple projections
Amir Leshem1,2 and Jacob Goldberger1

Abstract

Least squares (LS) fitting is one of the most fundamental techniques in science and engineering. It

is used to estimate parameters from multiple noisy observations. In many problems the parameters are

known a-priori to be bounded integer valued, or they come from a finite set of values on an arbitrary

finite lattice. In this case finding the closest vector becomes NP-Hard problem. In this paper we propose a

novel algorithm, the Tomographic Least Squares Decoder (TLSD), that not only solves the ILS problem,

better than other sub-optimal techniques, but also is capable of providing the a-posteriori probability

distribution for each element in the solution vector. The algorithm is based on reconstruction of the

vector from multiple two-dimensional projections. The projections are carefully chosen to provide low

computational complexity. Unlike other iterative techniques, such as the belief propagation, the proposed

algorithm has ensured convergence. We also provide simulated experiments comparing the algorithm to

other sub-optimal algorithms.

Index Terms

Integer Least Squares, Bayesian decoding, sparse linear equations. MIMO communication systems.

I. INTRODUCTION

A multiple-input-multiple-output (MIMO) system is a communication system withd transmit antennas

andp receive antennas. The tap gain from transmit antennai to receive antennaj is denoted byHij. In

each use of the MIMO channel a signal vectors = (s1, ..., sd)
⊤

is independently selected from a set of

constellation pointsA according to the data to be transmitted, so thats ∈ Ad. The received vectorx is

given by:

x = Hs+ n (1)
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The vectorn is an additive noise in which the noise components are assumed as zero mean, statistically

independent Gaussians with a known varianceσ2. The channel matrix which is assumed to be known,

comprises i.i.d. elements drawn from a (circularly symmetric zero-mean complex) normal distribution of

unit variance. In the case where the MIMO linear system is complex-valued we use the standard method

to translate it into an equivalent double-size real-valuedrepresentation that is obtained by considering the

real and imaginary parts separately. The MIMO detection problem is then becomes finding the transmitted

vectors given H andx. The optimal maximum likelihood (ML) solution is:

ŝ = arg min
s∈Ad

‖Hs− x‖2 (2)

However, ML decoding has exponential computational complexity which makes it unfeasible when either

the number of transmitted antennas or the constellation size are large. Actually, for a generalH, it is

known to be NP-HARD both in the worst-case sense [1] as well asin the average sense [2]. It can be

easily verified that the MIMO ML detection problem is equivalent to a least square lattice search problem

that is known to be NP hard. A simple approximation is the zero-forcing (ZF) algorithm which is based

on a linear decision ignoring the finite constellation constraint:

ŝ = (H
⊤

H)−1H
⊤

x (3)

and then, neglecting the correlation between the symbols, finding the closest constellation point for each

symbol independently. This scheme performs poorly due to its inability to handle ill-conditioned channel

matrix realizations. Somewhat better performance can be obtained by using a minimum mean square

error (MMSE) filter instead of ZF on the un-constrained linear system:

ŝ = (H
⊤

H + σ2I)−1H
⊤

x (4)

and then finding the closest lattice point in each component independently. A vast improvement over

the linear approach can be achieved by using sequential decoding. This algorithm, known as MMSE

V-BLAST or MMSE-SIC, has the best performance for this family of linear-based algorithms. However,

there is a still a significant gap between the detection performance of the MMSE-SIC algorithm and the

performance of the optimal ML detector. The complexity of all these algorithms isO(p3) wherep is the

number of receive antennas (we assumep ≥ d). These algorithms can also easily provide probabilistic

(soft-decision) estimates for each symbol (or each bit).

Many alternative structures have been proposed to approachthe ML detection performance. For

example, the sphere decoding algorithm [3], approaches using the sequential Monte Carlo framework

[4] and methods based on semidefinite relaxation [5], [6] have successfully been implemented. Although
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the detection schemes listed above have significantly reduced computational complexity, sphere decoding

is still exponential in the average case [7]) and semidefinite relaxation is high-degree polynomial. Neither

of these approaches can be easily used in real-world hardware architecture applications. Since these algo-

rithms find the closest point in the lattice, it is not straight-forward to compute a-posteriori probabilities

per symbol or per bit, which is required, when forward error correction is used (e.g., in communication

applications), but it can be done with increased complexityof the sphere decoding procedure [8]. Thus,

there is still a need for low complexity detection algorithms that can achieve good performance with

low-order polynomial complexity, that are capable of providing per-bit likelihood ratios.

In this paper we propose a novel iterative technique, which we dubTomographic Least Squares Decoder

(TLSD), that is based on 2D projections followed by iterative optimization. The solution also allows us

to provide a-posteriori probability distributions to eachbit of each variable, something desirable in coded

communication systems. Such probabilities are more complicated to evaluate using sphere decoding types

of solution.

The paper proceeds as follows. In Section 2 we present the proposed TLSD algorithm. Experimental

results are shown and discussed in Section 3.

II. TOMOGRAPHIC DECODING OFCONSTRAINED L INEAR SYSTEMS

In this section we present a novel polynomial time algorithmfor solving the bounded integer least

squares problem. The algorithm outperforms other reduced complexity algorithms with lower complexity.

The algorithm has two important steps. The first step is translating the problem into a set of two-

dimensional problems. The second step comprises of solvingiteratively the two-dimensional problems

by using data received from other two-dimensional problems. This is very similar to tomographic imaging,

where an object is reconstructed from its projections on lower-dimensional subspaces. Hence we dub it

Tomographic Least Squares Decoder (TLSD). The difference is that our object is discrete, and the data

that is shared among the projections consists of probability distributions. The second step can also be

interpreted as an instance of the incremental EM algorithm [9]. This will allow us to prove the convergence

of the algorithm.

A. The two-dimensional projections

Our approach can be viewed as a combination of a two-dimensional generalization of the ZF solution

with optimal solution of the 2D subsystems obtained by this generalization.
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Let h1, ...,hd be the columns ofH and for each1≤ i< j≤d let Aij be the matrix obtained fromH

by removing bothi-th andj-th columns. It can be easily verified that the transformation:

Pij = I − Aij(A
⊤

ijAij)
−1A

⊤

ij (5)

is an orthogonal projection into the complement of the sub-space spanned by{hk|k 6= i, j}. Hence

PijHs = Pij

∑

k

hksk = Pijhisi + Pijhjsj (6)

Applying the linear transformationPij on both sides of the equationHs + n = x, yields a set ofp

equations that depends only on the two variablessi andsj:

Pijhisi + Pijhjsj + Pijn = Pijx (7)

Using the simplifying notation:Hij = Pij [hi,hj], nij = Pijn andxij = Pijx, Eq. (7) can be written as:

Hij[si, sj ]
⊤

+ nij = xij (8)

wherenij ∼ N (0, σ2Pij). The density function ofxij is:

fij(xij ; si, sj) =
1

2πσ2
exp(−

1

2σ2
‖xij − Hij[si, sj ]

⊤

‖2) (9)

Note that this is a two dimensional density function since the vectorxij belongs to a two dimensional

subspace spanned byPijhi andPijhj. Furthermore, the orthogonal projection of an isotropic Gaussian

variable is still isotropic in the projected space.

We have converted the original linear system into
(

d
2

)

systems of sparse linear equations. If we take

only non-overlapping projections (e.g.P12,P34, ...,Pd−1,d) and solve the corresponding linear systems, it

can be easily verified that we get exactly the linear ZF solution. Our approach is based on takingall the
(

d
2

)

sparse systems. Due to the overlap between the projections,each of the solvers of the sub-problems

provides information to the other solvers.

Ignoring the noise correlation between equation sets obtained by different projections, the likelihood

function of s ∈ Ad, based on the sparse linear systems:

Hij[si, sj ]
⊤

+ nij = xij , 1≤ i<j≤d (10)

is:

f(x; s) =
∏

i<j

fij(xij; si, sj) (11)

= (
1

2πσ2
)(

d

2
) exp(−

1

2σ2

∑

i<j

‖xij − Hij[si, sj ]
⊤

‖2)
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Note thatf(x; s) is not the precise likelihood function since we ignore the noise correlation between

equations derived from different projections. Note however that all pairwise correlations are still captured

by the relevant 2-D subproblems, so basically we only give upnoise correlations of order 3 and higher.

Our goal now is finding the maximum-likelihood solution of the new system:̂s = argmaxs f(x; s).

In the next section we present an iterative method for maximizing f(x; s). The main point of this paper

is that by applying the 2D projections we shift from the original likelihood function into a very similar

function that is much easier to optimize. The sparsity of thenew system makesf(x; s) a much smoother

function than the original likelihood function. This smoothness enables applying an effective iterative

search. A similar situation occurs in LDPC codes[10] where the sparsity of the parity-check matrix

results in a smooth likelihood function.

B. Iterative solution of the sparse problem

We have now converted the original linear system, into
(

d
2

)

sets of sparse equations. The second step

of our approach comprises of solving iteratively the two-dimensional problems by using data received

from other two-dimensional problems.

Given an a-priori probability vector forsi, sj we can now easily usexij to update these probabilities

in a locally optimal way. Assume that for eachi = 1, ..., d we have an a-priori probability distribution on

si i.e., probability vectorsθi = (θi(1), ..., θi(M)), whereθi(k) = p (si = ak), whereA = {a1, ..., aM} is

the finite symbol set. Givenxij we can compute the a-posteriori probability forsi, sj denoted byθa
i ,θ

a
j

respectively and given by

θai (k) ∝ θi(k)

M
∑

ℓ=1

θj(ℓ)Dij(ak, aℓ) (12)

θaj (ℓ) ∝ θj(ℓ)

M
∑

k=1

θi(k)Dij(ak, aℓ)

where

Dij(ak, aℓ) = fij(xij; ak, aℓ) (13)

=
1

2πσ2
exp(−

1

2σ2
‖xij − Hij[ak, aℓ]

⊤

‖2)

and the notation∝ indicates normalization of the vector to make it a distribution. We can now iterate

the updates ofθi, i = 1, ..., d, by choosing at each iteration a new pairi < j and updatingθi,θj. It can

be shown that this is an instance of the EM algorithm.
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To initialize the process we need a good choice of the a-priori probability vectorsθi. This can be

done for example using a soft version of the ZF solution. LetPi be the ZF one-dimensional orthogonal

projection into complement of the subspace spanned by{hk|k 6= i}. Then the initial parameter values

are:

θi(k) ∝ exp(−
1

2σ2
‖Pihiak − Pix‖

2) (14)

C. The TLSD algorithm

To decode an integer LS problem we perform the following: We first compute all the matricesHij.

This amounts to
(

d
2

)

QR factorizations for eachi < j. This has complexityO
(

d2p3
)

, but it is done once

in the beginning of the decoding process. Now for each received vectorx we first use a ZF receiver to

generate the a-priori probability distributionsθi, i = 1, . . . , d. This has complexity ofO(p3), since the

main problem is the computation of the ZF receiver. Computing the priors isO(Md).

The next step is to compute for each two-dimensional vector of constellation points the metric using

equation (13). This has complexity ofO
(

d2M2
)

. This is done once for each received vector. Now we go

over all vectorsxij sequentially and updateθi, θj using (12). This is done until convergence is achieved,

typically with few iterations. The overall complexity isO(M2Niter). After convergence the we obtain

a-posteriori probabilities per symbol. A hard-decision solution is given by choosing for eachi = 1, ..., d

the most probable symbol:

ŝi = arg max
1≤k≤M

θi(k) (15)

The algorithm-box in Table I summarizes the TLSD algorithm.The proposed TLSD algorithm is based

only on two-dimensional subspaces. It is straightforward to improve the algorithm by using projections on

higher dimensional subspace. This can have improved performance, and higher computational complexity.

Finally we compare the likelihood of the solution vector with the likelihood of the MMSE-SIC solution

and choose the one with higher likelihood. It turns out that since these algorithms use different type of

information about the solution, that this improves the performance, especially for low SNR situations.

III. S IMULATIONS

In this section we provide simulation results for the proposed detector over various uncoded MIMO

systems. We assume a quasi-static fading channel with a frame length of 100. Under the assumption

of block-fading channel model, the channel matrixH is constant for 100 channel uses. The channel

matrix comprised i.i.d. elements drawn from a zero-mean normal distribution of unit variance. We have
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TABLE I

THE TOMOGRAPHICLEAST SQUARESDECODER(TLSD)

Input: An integer LS problem:Hs+ n = x, a noise levelσ2

and a finite symbol set{a1, ..., aM}.

Initialization:

For i = 1, ..., d

initialize 〈θi(k) : ak ∈ A〉 using zero-forcing (14).

For each pair1 ≤ i < j ≤ d

Compute the projectionPij using Eq. (5) and compute:

Dij(ak, aℓ) = exp(− 1

2σ2 ‖Pij(x− hiak − hjaℓ)‖
2) .

End

Do until convergence

For 1 ≤ i < j ≤ d

Update the distributionsθi, θj :

θi(k) ∝ θi(k)
PM

ℓ=1
θj(ℓ)Dij(ak, aℓ)

θj(ℓ) ∝ θj(ℓ)
PM

k=1
θi(k)Dij(ak, aℓ)

End

End

For i = 1, ..., d

Chooseŝi = argmaxk θi(k).

used 10,000 realizations of channel matrix. This results in106 vector messages. The SNR is defined as

10 log10(Eb/N0) whereEb is the average received energy per symbol at each receiver antenna.

Fig. 1 shows the symbol error rate (SER) versus SNR for a8×8 BPSK MIMO system. The performance

of the TLSD method is compared to ML detection and to other linear suboptimal algorithms: the linear

MMSE and the sequential MMSE V-BLAST. In all our experimentsthe number of TLSD iterations was

limited to 10. It can be seen that the TLSD algorithm is significantly better than the MMSE-SIC at

the same computational complexity. Fig. 2 depicts similar results for a16 × 16 4-PAM MIMO system.

The TLSD decoder significantly outperforms the MMSE-SIC, while having comparable computational
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complexity.

IV. CONCLUSIONS

Solving integer least squares problems is an important problem in many fields. We have proposed a

novel technique based on tomographic principle of reconstruction from projections. We showed that the

method always converges. Furthermore, the proposed methodhas good performance competitive to all

other polynomial algorithms for solving the problem as demonstrated in simulations. Finally the method

can be extended to provide a-posteriori probabilities per bit for use in coded communication systems or

combined with sphere decoding, to improve its performance.
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Fig. 1. Results for8× 8 system,A = {−1, 1}
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