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ABSTRACT

The paper first recalls the Blahut Arimoto algorithm for caripg
the capacity of arbitrary discrete memoryless channelanasam-
ple of an iterative algorithm working with probability detysesti-
mates. Then, a geometrical interpretation of this algorittased
on projections onto linear and exponential families of atuilbities
is provided. Finally, this understanding allows also topmse to
write the Blahut-Arimoto algorithm, as a true proximal poatgo-
rithm. it is shown that the corresponding version has an avgul
convergence rate, compared to the initial algorithm, ad a®lin
comparison with other improved versions.

Index Terms— lIterative algorithm, Blahut-Arimoto algorithm,
Geometrical interpretation, Convergence speed, Proxjoiat method.

1. INTRODUCTION

In 1972, R. Blahut and S. Arimotfi, [2] received the Information
Theory Paper Award for their Transactions Papers on how o co
pute numerically the capacity of memoryless channels viitite
input and output alphabets.

The Blahut-Arimoto algorithm was recently extended to ehan
nels with memory and finite input alphabets and state sg&}es

Recently, an algorithm was proposed for computing the dapac
of memoryless channels wittontinuousinput and/or output alpha-
bets where the Blahut-Arimoto algorithm is not directly b [4] .

In[[5], information geometric interpretation of the Blahut-Adto
algorithm in terms of alternating information projectiorasvpro-
vided. Based on this last approach, M§é} proposed a modified
Blahut-Arimoto algorithm that converges significantly teasthan
the standard one.

2. TOOLS

2.1. Kullback-Leibler divergence and Mutual Information

The Kullback-Leibler divergence (KLD]7, (8] is defined for two
probability distributiong = {p(z),z € X} andq = {q(z),z € X}
of a discrete random variab}¢taking their values in a discrete set
X by:

D = X) lo @

(plla) %p( Vlog 5

The KLD(also called relative entropy) has some of the pridgeof
a metric: D(p||q) is always non-negative, and is zero if and only if
p = q. However, it is not a true distance between distributionsesi
it is not symmetric D(p||q) # D(q||p)) and does not satisfy the
triangle inequality in general. Nonetheless, it is ofteefukto think
of relative entropy as a distance between distributions.
The channel capacity is given by:

X Moisy Channel

POY | X)

F|g l Channel model

C = max|I(X)Y)
p(z)

Where the mutual information of the two discrete randomalaas
X andY is given by :

1(X,Y) = E,{D(p(y]¥|Ip(y))}

2.2. Linear and exponential families of probability

The algorithm proposed by Matz is based on an approximation o

a proximal point algorithm. Instead, we propose a true pnaxi
point reformulation that permits to accelerate the coreecg speed
compared to the classical Blahut-Arimoto algorithm ana atsthe
approach irflg].

Our contributions regarding capacity computation for dite
memoryless channels (DMCSs) in this paper are:

e Geometrical interpretation of Blahut-Arimoto algorithm i

terms of projection onto linear and exponential families of The vectora: = [ag, ..

probability.
e True proximal point interpretation.

e Improvement of the convergence rate based on the proxim
point formulation.

Thanks to Newcom++ WPR4 for funding.

A linear family of probability is defined g :
Vi1, f2,..., [k € XandVai, az,. ..

L=A{p:Ep(fi(2)) = 2,1 <i < K}

y K

The expected valug, (f;(z)) of the random variable x with respect
to the distributiorp(x) is restricted tay;. A linear family of proba-
bl|lty is characterized b){fL (x)}lgigK and{ai}lgigK.
., o] serves as a coordinate system in the
manifold of the linear family. These4 coordinates are chllmix-
ture coordinates”.

An exponential family{5] of discrete probability distributions

aA(x) on an alphabeX is the set

. _ Q) expX K (0 fi(x))
E=1{p:p(¥) = S en sk (@)
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The exponential family is completely defined by;(z) andQ(x)
and parameterized .

The distribution@(z) is itself an element of the exponential family.
Any element of€ could play the role of Q(x), but if it is necessary
to emphasize the dependence€adin Q(z), we will write Eq.

3. BLAHUT-ARIMOTO-TYPE ALGORITHM

3.1. The original Blahut-Arimoto algorithm

Let consider the case of a discrete memoryless channel mptlt i
symbol X taking its values in the séto, . . ., s } and output sym-
bol Y taking its values in the sefyo,...,y~}. This channel is
defined by its transition probabilities channel matrix Q[@$;; =
Qi; = Pr(Y = yi|X = z;). We also defing; = Pr(X = z;)
andqi = PT(Y = yi)-

The mutual information is given by:

M N

XV =1(p.Q) => > p;Qu; 1og

=0 1=0

(Qslla)

ZPJ

And the channel capacity by:
C =maxI(p,Q)
P
By solving this maximization problem and taking into coresid
ation the normalization conditior}__ p(z) = 1, we find:

. _ _pjexp(D(P(Y]|X=z;)||P(Y)))
bj = 22 pilexp(D(P(Y[X=z;)[[P(Y)))]

Hence, the Classical Blahut-Arimoto algorithim [1, 2] is terative
procedure:

*) b
(k1) — P (@) exp(Dz)

T S ) (D) @
with DX = D(p(Y = y|X = z)||p(Y = y*)).

3.2. Geometrical Interpretation of Blahut-Arimoto Algori thm

The Blahut-Arimoto algorithm ir({1) can be recalculated asiai-
mization problem:

min,
s.c I® (p(z)) =
s.c >Lpx)=1

wherel® (p(z)) = E,{D(p(y|z)||p" (v))} is the current capacity
estimate at the iteratioh and « is related to the Lagrangian multi-
plier of this minimization problem.

The Lagrangian corresponding to this minimization probtam be
written as follow:

£ = D(p()|lp™ (2)) = M (™ (p(2)) = @) = A2(32, p(x) — 1)

%(21) = 0= log(p(z)) +1—log(p™(z)) — \1DE —

p(z) = p™(z) exp(A2 — 1) exp(Xi Df)

Taking into consideration the normalization constrairg,aan easily

obtain thatexp(\s — 1) = andp* V) (z) =
p™) (2) exp(21 DF)

> ) (@) exp(A1 DE)

in the following, we will see that this parametgr is a step size pa-

rameter which, for convenient values, can accelerate thveecgence

A2 = 0and

> p(’“)(w)cxp(hD")

speed of the classical Blahut-Arimoto algorithm in which= 1.
So the Blahut-Arimoto Algorithm can be interpreted as thejgu-
tion of p(*)(z) onto a linear family of probability. at the point
p“*1) () whereL is defined by () = Df = D(p(y/2)|lp™) (4))

anda¥ such asE, (DF) = al

By choosing increasing?, we would ensure that the mutual in-
formation increases from one iteration to the othéF () (p(z)) >
I™® (p(z))). However, this quantity is only implicitly defined in the
algorithm and an appropriate choice is not available.lridhewing,
we show that this problem will be solved based on a proximaitpo
interpretation that ensures that the mutual informatiendases dur-
ing iterations.

Note that this linear family of probability is changing froone
iteration to the other.
On the other hand, the Blahut-Arimoto algorithm can be prieted
as the projection of a probability density function (pdfij@an expo-
nential family of probability defined byQ(z) = p™ (z), f* (z) =
DY and parametrized with(*) at the pointp* 1) ().

To do this, we should solve this problem:

{ minD(R(z)||p(z,0))
Q(z)exp(0f1(x)
P(2,0) = = Gwreanton o
where R(z) is a certain pdf. We try now to find some interest-
ing characteristics oR2(z). To do this, let solve the minimization
problem given above" 2E@oer®) — o with log p(z,0) =
log Q(z) + 0 (x) — log(3>, Q(x) exp(01(x)))
R(x T z) exp(60 T
S03Z, R(@)fi(a) - Bt Eari i = 0
T xz) exp(6 T

Hencey™, R(z)fi(z) — == Zi(Q)&l)(eip(;f(l (j;.l)() LS, R(x)
ingto " (R(z)— p(z,0))fi(x) = 0 having thaty R(x

Q(z) exp(f1(x))
andp(z,0) = 50T exp(0h1 @)
We obtain

0 lead-

) =

>, (R(z) = p* () Df = 0
Which can be reformulated as
I(R,Q) =Er(D}) = E;" (D)) =
1(p™) (x))
Hence the Blahut-Arimoto algorithm can be interpreted asptto-
jection of pdfsR () with higher mutual information thaf(p® (x:))
onto an exponential familg defined byQ (z) = p™* (z), f* (z) =
DF and parameterized ") = 1/ at the pointp**V (). Note
that this exponential family is also changing from iteratio another

since Q(x) andfl(k)(:c) depends on the iteration. Here again, an ap-
propriate choice of the parameter for increasing convergeate is
difficult, because of the implicit definition of the family. his, a
proximal point interpretation maximizing explicitly theutual in-
formation is considered with a given penalty term.

I(p"* ) (x),Q) >

3.3. Proximal point interpretation of B.A. and amelioration in
terms of convergence speed

Following the results above, and based on a proximal potet-n
pretation, we can solve the problem stated by the implidind@sn
of the families. In fact, we propose a clear equivalence withue
proximal point interpretation, in which all constants arleitly
defined, thus allowing to propose convergence rate imprenenit
is easily shown that the Blahut-Arimoto algorithm is eqleéve to

p* V(@) = arg mgx{f(k)(p(w)) — D(p(x)[[p™(x))}  (2)



In fact, by deriving this expression ovefz) and set it equal to zero,
we find exactly the iterative expression of the Blahut-Arimalgo-
rithm.

But till now we cannot say that the Blahut-Arimoto algorithm
can be interpreted as a proximal point method since the oost f

tion I®)(p(z)) depends on the iterations, just like the families were

depending on the iterations. In fact, a true proximal poigoathm
can be written for a maximization problefil] as follow :
Billo — 6™ |1

6" = argmax{¢(9) — ®)

I(p(z)) = Ae(D(p(2)[[p™ (z)) = D(a(y)lla™ (v)))

and set it equal to zero we find:
PH@) = pN (@) exp {32, plyl) log -

+5= 3, p(ylz) log 2k)

1
(k)(y) A

Here, it is important to note that we can obtain the classiaaé by
simply replacingh\x by 1.

Moreover, we can also obtain the approach proposed by Mtz [6

by intuitively replacing the probability distributiof(y) in the right

in which £(6), the cost function to be maximized, is independenthand of the equation by the same distribution calculatetieapte-
from the iterations}|6 — 6*)||? is a penalty term which ensures that vious iteration ¢ (y)). Namely:

the updat®* 1) remains in the vicinity o8*) and, is a sequence
of positive parameters. Ih[10], Rockafellar showed thaeslinear
convergence of this method is obtained when the sequéncen-
verges towards zero.

The definition of the proximal point algorithm ifl(3) can bengeal-
ized to a wide range of penalty terms leading to this generahd-
lation:

60 = arg max{€(9) — B/ (0,6")}
wheref(6,0™)) is always non negative ang(#*), 0*)) = 0.
The mutual informatiod (p(z)) can be expressed as:

I(p(x)) = 1 (p(x)) — D(a(w)lla™ (v))
Introducing [(4) in[(2) leads t01)( -

arg max, {1 (p(x)) — (D ( (@)llp™ (2)) = D(a(w)lla™ ()}

This new formulation establishes a clear link with the déifini of
the capacity based on the mutual information. However, foua
proximal pint formulation, we need to show that:

D(p(x)|lp™ (z)) — D(a(m)l|g™ (y)) > 0

with equality iff p(z) = p®™ (z) andq(y) = ¢ (y) in order to
prove that the Blahut-Arimoto is a proximal point algorithm
The penalty ternD (p(z)||p* (z))—D(q(y)||¢"*’ (y)) can be rewrit-

p@)Y; pyl&)p™ (@)
ten asty e 08 TS ot mr)

We can also write according to Jensen'’s inequdlfly:

p™ (2)>; p(yl@)p(E)
()ZM@MﬂW@] 5)

> —log(}_ > plz.y) =0 ®

4)

E(p(z,y)[— log

This proves that the Blahut-Arimoto algorithm can be inteted
as a true proximal point method where the cost function igrine
mutual information and the penalty term reads

D(p(x)|[p™ (x)) = D(a(w)lla™ ()

The corresponding proximal point algorithm reads:

p" () = A(D(p(a)[[p™ (2)))
}}

= argmax(e) {I
—D(a()lle"™ (v)
()

P @) = p®(@)exp {3, plylr) log Tl —
(y|z)
+>\k Z p(y|flf) IOg p(ky)(y)

After normalization, we get*+) (z) = p*)(z) exp(D¥ /A, ) which
is the expression of Matz's approach. This is globally samib the
One-Step-Late algorithm suggested by Gfééh

We conclude that Matz’s approach is based on an approximafio
the proximal point method, but what is lost in comparisorhvite
true proximal point method is the guarantee that the method ¢
verges, since convergence conditions must be reviewed.agai
We can write according t@17):

I(p* D (x)) —

Ak(D(p* 0 (@)[[p™ () — D(g
1(p™ () = A(D ™ ()] 1p™ (2)

Hence

ED (1)1g™ () >
) = D(@® ()la™ (y)))

1*()) >
I(p™ () +Xe(D(* D (2)[[p™ () — D(@* ) (y)]1g™ (v)))

To ensure the increasing of the mutual information duriacgitions,
we must have:

I(p*™ () > 1(p™ (2))

So thath,(D(p* 0 (2)|p™ (x)) = D(a**V (y)llg™ () > 0

which is true, from[(5) for every\, > 0 which is not true in the
approach proposed by Matz. In our method, we chogseuch
that:

max, k(D" (@)[[p™ (@) = D™V ()llg™ (1))

in whichp**V (z) andg**1) (y) depend om\y.

This ensures that the difference betwéép** " () andI (p* (z))
is as maximum as possible from one iteration to the other No&e
that this maximization problem is solved by the conjuguasaient
method which gives the most convenient value of the step.Jsize
comparing to the approach proposed by Matz.

Note that, in terms of algorithmic complexity, the updatedise of
Ak in each iteration requires:

(N+M+1) divisions and (N+M) multiplications in Matz's apmach.
(2N+M+1) divisions, (2N+M+2) multiplications and 2 additis in
our case based on the proximal point method.

Hence, our method requires less than twice operations gmitiin
compared to the approach proposed by Matz, however, it cgese

where),; is the step size introduced in order to accelerate the confaster (as we can see in the simulation results showed b#ievit-

vergence rate of the classical Blahut-Arimoto algorithm.
By deriving this function

eration number is divided by two in the worst case). A compsem
must be established depending on our interests.



4. SIMULATION RESULTS

First, we test the 3 versions of the Blahut-Arimoto iteratgorithm
on a Discrete Binary Symmetric Channel (DBSC) defined by the
0.7 0.2 0.1

transition matrix :
Q:{ 01 02 0.7 }

The results (fi@2) show that the channel capacity is acHiafter 20
iterations in the classical case, 7 iterations in Matz'ssegph and 4
iterations in our case (with a precisionaf—*t).
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Fig. 2. Comparision between the 3 approaches in the case of a DBSE cha
nel
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A second example intends to characterize better the effigieh (4]
our method in comparison with the one by Matz. In order to doso
need a higher dimension problem. We have chosen the dizatieti
of some continuous Gaussian Bernouilli-Gaussian chametder
to form a transition channel matrix Q with higher dimensio8sch

a channel is defined as follows :

[5]

Yk = T + b + Yk [6]
where

e b~ N(0,0%)

® Vi = €rgk

o g~ N(0,02)
Hence

with (7]

with

e : Bernouilli(p) sequence
Uf < 03

(8]

Yk = Tk + Nk

[l
with

p(ni) = (1 = p)N(0,03) + pN (0,07 + 03) [10]

The outputy, has been discretized at) values, and the input;

on 10 values. The results plotted on (fiy.3) for parametgrs=

0.3, 0 = 0.01, 04 = 1) show the acceleration of the Blahut-Arimoto [11]
algorithm from 14 iterations in Matz’s approach to 7 itevas in our
method.

5. CONCLUSIONS

We have proposed geometrical interpretations and impremeson
the Blahut-Arimoto (BA) algorithm for computing the capigcof
discrete memoryless channels (DMC). Based on the true rpedxi
point approach and solving the maximization problem with¢bn-
jugate gradient method, we have accelerated the convergateof
this iterative algorithm compared to the aproach proposeifiatz
which is based on an approximation of the proximal point roéth
We are currently investigating the use of similar techngyfar im-
proving the convergence rate of other iterative algorithms

9.5

851 —

Matz approach
—#— proximal point approach
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sl i
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Fig. 3. Comparision between the 2 approaches in the case of a Gaussia
Bernouilli-Gaussian channel
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