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ABSTRACT

This paper proposes a differential quantization strategy to be used
in the feedback link of a multi-input-multi-output (MIMO) commu-
nication system. This algorithm is applied to the channel correla-
tion matrix exploiting geodesic curves and the intrinsic geometry
of positive definite Hermitian matrices. Simulation results in the
paper show that the proposed algorithm improves other techniques
based on the direct quantization of the channel response matrix or the
quantization of the subspace spanned by the strongest eigenmodes of
the MIMO channel, i.e., Grassmannian based techniques. The main
drawback of Grassmananian based algorithms is that the transmit-
ter is constrained to apply a uniform power allocation among eigen-
modes, which is not forced in the algorithm proposed in this paper.

Index Terms— MIMO systems, feedback communication,
quantization, differential geometry.

1. INTRODUCTION

Multi-input-multi-output (MIMO) communication channels are
known to provide significant gains in system performance. These
gains depend strongly on the quality of the channel state informa-
tion (CSI) which is available during the design. Obviously, the best
performance is achieved when such CSI is complete and perfect, al-
though this is a not realistic assumption, specially at the transmitter.

In scenarios where channel reciprocity does not hold, a feed-
back channel with limited capacity can be used to send the CSI
from the receiver to the transmitter. In this sense, proper quan-
tization procedures to be applied to the channel estimates have
to be designed. Following this idea, [1] (and other works by the
same authors) proposed Grassmannian packaging, which is the opti-
mum non-differential quantization strategy for zero-mean Rayleigh
MIMO channels with independent components and where the trans-
mitter is constrained to apply a uniform power allocation among the
transmission modes. It was shown that, under this constraint, the
transmitter only needs to know which is the subspace spanned by the
strongest right singular eigenvectors of the MIMO channel matrix
H. Based on this, the quantization is applied over the Grassmannian
manifold, i.e., the set of all the possible subspaces [2].

In [3] the same constraint was considered but a differential
quantization was applied, which makes sense in scenarios where the
channel is slowly varying and, therefore, the temporal correlation
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can be exploited to improve the quality of the quantization. The
proposed technique consisted in defining geodesic curves over the
Grassmannian manifold [2], i.e., curves whose all their points are
within such manifold, and which connect pairs of points in this
space (i.e., subspaces) with a minimum distance.

In more general cases where the power allocation is not con-
strained to be uniform, the optimum linear signalling scheme de-
pends on the MIMO channel correlation matrix, i.e., RH = HHH

for any quality criterion such as mutual information, mean square er-
ror (MSE), signal-to-noise ratio (SNR), bit error rate (BER), among
others [4]. Note that in this case, the design depends on the right
singular vectors of the channel matrix (and not only on the sub-
space spanned by them) in addition to the eigenvalues. Taking this
into account, now the quantization should be applied over the set of
correlation-like matrices, i.e., Hermitian and positive definite matri-
ces, instead of the Grassmannian manifold.

In this paper we propose a differential quantization algorithm to
be applied to the channel correlation matrix exploiting the intrinsic
differential geometry of the set of positive definite Hermitian ma-
trices and using geodesic curves. More concretely, we propose an
algorithm that at each iteration defines a set of orthogonal curves in
the set and identifies a set of candidate points which are the quanti-
zation proposals. The selection of the point to be fed back depends
on the cost function, that is related to the specific measure of per-
formance for the system or can be the geodesic distance to the exact
channel realization. [5] also used the concept of geodesic curves in
the set of correlation-like matrices, but the application was for chan-
nel classification instead of differential quantization.

The paper is organized as follows. The system and signal models
are given in section 2. Section 3 introduces the geometry of the space
of correlation matrices, and then the description of the algorithm
follows in section 4. Numerical simulations are shown in section 5,
and section 6 concludes the paper.

2. SYSTEM AND SIGNAL MODELS

Let us consider a MIMO channel with nT and nR transmit and
receive antennas, respectively, represented at time instant n by
H(n) ∈ C

nR×nT . The nR received signals at the same time
instant, assuming a linear transmitter, can be expressed as

y(n) = H(n)B
� �RH(n)

�
x(n) + w(n) ∈ C

nR , (1)

where x(n) ∈ C
nS represents the nS streams of signals to be trans-

mitted with E
�
x(n)xH(n)

�
= I, and B ∈ C

nT ×nS is the linear
transmitter matrix that must satisfy the mean transmit power con-
straint ‖B‖2

F ≤ PT (‖ · ‖F stands for the Frobenius norm). Note
that we explicitly indicate that the transmitter depends on the avail-
able estimate of the channel correlation matrix �RH(n), where the
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exact matrix is RH(n) = HH(n)H(n). The AWGN at the receiver
is represented by w(n) ∈ C

nR with E
�
w(n)wH(n)

�
= σ2

wI.
In this paper, we consider that the receiver estimates perfectly

the current channel matrix H(n), as in [1, 3], and that the transmit-
ter designs B assuming that the available CSI at its side represented
by �RH(n) is also perfect. In reality, however, the CSI at the trans-
mitter is not perfect because it is a quantized version of the perfect
CSI estimated at the receiver. The possibility of errors and delay in
the feedback channel is not considered in this paper. The transmitter
design can be done according to different criteria, such as the maxi-
mization of the mutual information or the SNR, or the minimization
of the MSE or the BER, among others. In all the cases, the optimum
transmitter has been shown to depend only on the channel correla-
tion matrix RH(n) [4]. For each of the design criteria a cost function
d(�RH(n),H(n)) can be defined, so that the design objective is its
minimization. A couple of examples of cost functions are given be-
low1 (we drop the dependency with respect to the time index n for
the sake of clarity in the notation):

• Maximization of the SNR with single beamforming (nS = 1):

d(�RH(n),H(n)) = − 1

σ2
w

‖HB‖2
F , (2)

where the transmission matrix B ∈ C
nT ×1 is defined as

B
� �RH(n)

�
=

√
PT umax

� �RH(n)
�
, (3)

and umax(·) stands for the unit-norm eigenvector of maxi-
mum associated eigenvalue.

• Maximization of the mutual information:

d(�RH(n),H(n)) = − log2

����I +
1

σ2
w

BB
H
H

H
H

���� , (4)

where the transmission matrix B ∈ C
nT ×nS is defined as

B
� �RH(n)

�
= �U(n)P1/2(n), P(n) = diag(p1, . . . , pnS

),
(5)

and �U(n) consists of nS columns that are the nS eigen-
vectors of �RH(n) associated to its nS maximum eigenval-
ues {λi}nS

i=1. The power P(n) is allocated according to the
waterfilling solution (pi = max {0, μ − 1/λi} where μ is a
constant such that

�nS

i=1 pi = PT ) [4].

The next sections are devoted to describe an algorithm for quan-
tizing the actual correlation matrix RH (instead of H) from the re-
ceiver to the transmitter in a differential way. Since RH belongs to
the set of Hermitian positive definite matrices,2 exploiting its inher-
ent geometry will improve the performance of the quantization.

3. GEODESIC CURVES, DISTANCES AND SCALAR
PRODUCTS

As shown in [6] the set of Hermitian positive definite matrices S =
{R ∈ C

nT ×nT : RH = R,R � 0} is a convex cone3, i.e.,

1Note that the focus of this paper is not on the definition of the cost fun-
cion, but on the minimization of any cost function that depends simultane-
ously on the estimated channel correlation matrix and the actual channel.

2In the following we will assume that the channel correlation matrix is
strictly positive definite. If this cannot be guaranteed because, for example,
nR < nT , it is possible to work with extended correlation matrices defined
as �RH = H

H
H + εI, ε > 0, which are positive definite by construction.

3Actually, reference [6] is devoted to the case of real matrices, although
the results and conclusions can be extended directly to the complex case.

∀R1,R2 ∈ S ,∀s ≥ 0, R1 + sR2 ∈ S . The characterization
of this set is described properly by means of differential geometry,
which states a set of definitions for the distance, scalar products and
routes within this set:

• Scalar product and norm: At any point in this set S given
by R (also named as base point), the scalar product between
two Hermitian matrices A and B is defined as 〈A,B〉R =
Tr(R−1AR−1B). This definition implies that the norm is
defined as ‖A‖R =

	
Tr(R−1AR−1A).

• Geodesic curve: Let us take two points R1and R2 in the set
S . Then, the geodesic curve Γ(t), which is the curve con-
necting these points with minimum distance and with all its
points belonging to S , is given by

Γ(t) = R
1/2
1 exp

�
tC
�
R

1/2
1 , (6)

where C = log
�
R

−1/2
1 R2R

−1/2
1

�
, Γ(0) = R1, and

Γ(1) = R2. The derivative of the geodesic curve at t = 0,
which is in fact the direction of such curve at t = 0, is given
by the Hermitian matrix Γ′(0) = R

1/2
1 CR

1/2
1 .

• Geodesic distance: The geodesic distance between any two
points in S is given by the length of the geodesic curve that
connects them. According to the previous notation, it can be
shown that this distance is given by

distg(Γ(0), Γ(t)) = |t|‖C‖F , ⇒ distg(R1,R2) = ‖C‖F .
(7)

or, using an equivalent expression,

distg(R1,R2) =
�


i

| log λi|2
�1/2

, (8)

where {λi} are the eigenvalues of matrix R
−1/2
1 R2R

−1/2
1 .

4. ALGORITHM DESCRIPTION

The fundamentals of the algorithm proposed in this paper are based
on a differential quantization of the channel correlation matrix
RH(n). The objective is to minimize the cost function as presented
in section 2, which can be related to the quality measure of the
system. In this case the receiver has to know which is the kind of
design that the transmitter will perform. If a more general setup is
to be considered so that the feedback can be used for any transmitter
design, a cost function that can be used is simply the geodesic dis-
tance between the actual channel correlation matrix and its fed back
estimate, i.e., d(�RH(n), H(n)) = distg(�RH(n),HH(n)H(n)).

The differential quantization algorithm for the feedback of the
channel correlation matrix is an iterative procedure, defined by the
following steps corresponding to iteration n:

• Initial situation: The receiver has a perfect knowledge of the
current channel matrix H(n). Both the transmitter and the
receiver know which is the last estimate of the channel corre-
lation matrix sent through the feedback channel �RH(n − 1).
At the first iteration the algorithm starts from the cone vertex:�RH(0) = I.

• Step 1: Both the receiver and the transmitter generate a com-
mon set of Q random Hermitian matrices using the same
pseudo-random generator and the same seed. Then, these
matrices are orthonormalized using the Gram-Schmidt pro-
cedure [7] according to the definition of scalar product pre-
sented in section 3, producing the set {Ai}Q

i=1. The base
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Fig. 1. 2-bit differential quantization in the space of channel corre-
lation matrices.

point used in the scalar product is R = �RH(n − 1). Fi-
nally, each matrix Ai is re-scaled individually so that Ci =
R−1/2AiR

−1/2 has a norm equal to Δ (‖Ci‖F = Δ). Note
that this parameter Δ will be, in fact, the quantization step of
the algorithm, and its impact on the algorithm performance
will be studied in section 5.

• Step 2: Both the receiver and the transmitter use the previous
matrices to generate a set of Q geodesic curves {Γi(t)}Q

i=1

having all of them the same initial point R = �RH(n − 1)
and with orthogonal directions:

Γi(t) = �R1/2
H (n − 1) exp

�
tCi

� �R1/2
H (n − 1). (9)

The maximum number of orthogonal routes is given by the
dimension of the set of Hermitian matrices, i.e., Q ≤ n2

T .

• Step 3: Each of these geodesic curves is used to generate
two candidates for the feedback in the next iteration �RH(n).
Thus, the number of candidates will be 2Q:� �R(2i−1)

H (n) = Γi(−1), 1 ≤ i ≤ Q,�R(2i)
H (n) = Γi(1), 1 ≤ i ≤ Q.

(10)

• Step 4: The receiver evaluates the cost function for each
of the candidates, and sends the corresponding index iF B

through the feedback channel to the transmitter (therefore,
the number of feedback bits has to be higher than or equal to
log2(2Q)). The selected matrix will be used for the transmit-
ter design and as the starting point in the next iteration:

iF B = arg min
i

d(�R(i)
H (n),H(n)), 1 ≤ i ≤ 2Q,

�RH(n) = �R(iF B)
H (n) (11)

Figure 1 shows the differential quantization process using 2
bits. Starting from �RH(n − 1), the algorithm generates 2 geo-
desic routes Γ1(t) and Γ2(t) with orthogonal velocity matrices
A1 and A2, respectively. The four quantization candidates are:�R(1)

H (n) = Γ1(−1), �R(2)
H (n) = Γ1(1), �R(3)

H (n) = Γ2(−1), and�R(4)
H (n) = Γ2(1). At the receiver, each candidate is compared to

the actual RH and the one with smallest cost function (in this exam-
ple candidate 3) is chosen. That is, its index iF B = 3 is sent to the
transmitter through the feedback channel and �RH(n) = �R(3)

H (n).
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Fig. 2. Cumulative performance loss versus quantization step Δ.

The next iteration starts from this point, generates 2 orthogonal
routes and 4 quantization candidates, selects the closest candidate to
RH (according to the cost function), and so on.

5. SIMULATION RESULTS

In the simulations, we consider a random MIMO channel following
a first-order time-variation model according to the expression:

H(n) = ρH(n − 1) +
�

1 − ρ2N(n), (12)

where matrices H(n − 1) and N(n) are assumed to be independent
and composed of i.i.d. zero-mean complex Gaussian entries with
unit variance. The time correlation factor ρ models the variability of
the channel and depends on the Doppler frequency of the terminal
fD through the expression ρ = J0

�
2πfDtdel

�
[8], where J0 is the

zeroth-order Bessel function of the first kind and tdel corresponds
the time difference between consecutive feedback instants. The case
of an invariant channel corresponds to ρ = 1.

The quantization step Δ, presented in section 4, is the geodesic
distance between the last value of the estimated correlation matrix�RH(n − 1) and the quantization candidates. The choice of this pa-
rameter has a direct effect on the behavior of the algorithm: larger
values of Δ result in faster convergence but larger stable-state error,
and smaller values of Δ result in slower convergence but also smaller
stable-state error. In order to achieve a compromise between conver-
gence rate and stable-state error, the optimization of Δ is made for
minimum cumulative performance loss in a window of 50 iterations.
That is, for each of the 50 first iterations the difference between the
performance with perfect CSI and the performance using our lim-
ited feedback algorithm is added, and the result is optimized by the
parameter Δ. Figure 2 shows the cumulative performance loss ver-
sus Δ for different values of the correlation factor ρ. The results
correspond to a setting of nT = 2, nR = 2 antennas, 3 feedback
bits, a window of 50 iterations and an average over 200 channel re-
alizations. As cost function we used the geodesic distance to the
correlation matrix of the exact channel realization. The curves show
how the optimum Δ increases as the MIMO channel is more time-
variant (smaller ρ). For the rest of the simulations in this section the
optimum Δ was taken for each case following this scheme.

Figure 3 shows the result of a simulation where the channel is
constant and the performance is measured using the SNR criterion.
The parameters taken in the simulation are PT = 0.3, nT = 2,
nR = 8 antennas, 3 feedback bits and an average over 200 channel
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realizations. Here the comparison is between the proposed track-
ing algorithm applied to the channel correlation matrices, a tracking
algorithm of channel response matrices4, a non-differential quanti-
zation using Grassmannian packages [1] and ideal tracking using
perfect CSI at the transmitter.

Our algorithm showed faster convergence and smaller stable-
state error than the channel response matrix tracking. The gain is
due to the fact that we use geodesic routes on the space of correlation
matrices and that in this case a quantization on RH has less dimen-
sions than a quantization on H (RH is Hermitian, positive definite
and 2x2, while H is random Gaussian 8x2). The non-differential
Grassmannian technique presents a floor in the performance since it
does not exploit the time-invariance of the channel.

The behavior in a time variant channel of the algorithm pro-
posed is analyzed and compared to the algorithm from [3]. Figure 4
shows the performance of the two algorithms compared to that of an
ideal tracking (perfect CSI) according to a mutual information cri-
terion. The simulation considers a random realization of a channel
with ρ = 0.97 and nT = 3, nR = 3 antennas. 500 realizations
of the algorithms over that channel realization were performed us-
ing the optimum quantization steps for each algorithm, PT = 0.3,
nS = 2 streams and 1 feedback bit. Our algorithm offers a better
performance than the algorithm in [3] because it tracks the eigenvec-
tors and the eigenvalues of RH , allowing a waterfilling-like power
allocation instead of the uniform power allocation used in [3], where
the eigenvalues are unknown.

6. CONCLUSIONS

The feedback strategy proposed for MIMO communications, which
is based on a differential quantization of the channel correlation ma-
trix using geodesic routes, has several advantages over other existing
feedback strategies. This technique exploits the intrinsic geometry of
correlation matrices (positive definite Hermitian) versus channel re-
sponse matrices in order to improve quantization performance. Fur-
thermore, the use of orthogonal geodesic routes generates quantiza-
tion candidates at each iteration that are better distributed than in the

4The tracking algorithm of the channel response matrices is also a differ-
ential quantization strategy applied to H(n) instead of RH(n), where the
quantization candidates are also obtained through orthogonal routes. Note
that in this case, the orthogonal routes are simple straight lines and that the
quantization step has also been optimized in order to maximize the perfor-
mance and for a fair comparison with our proposal.
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Fig. 4. Correlation matrix geodesic quantization and algorithm pro-
posed in [3] compared to ideal tracking in a time variant channel.

case of channel response matrix quantization. This also leads to an
improvement in the quantization performance. Another fundamental
advantage lies on the fact that the transmitter is not forced to apply
uniform power allocation among the eigenmodes, which translates
into a design gain.

Simulations show that this algorithm achieves better perfor-
mance than other techniques based on the direct quantization of
the channel response matrix or the quantization of the subspace
spanned by the strongest eigenmodes of the MIMO channel, as well
as non-differential strategies like Grassmannian packaging.
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