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ABSTRACT based on distinct signal properties. The first method, “Com-

We present two new noise variance estimation methods f rlex Essential Supremum Estimate (C-ESE)", takes advan-

OFDMA signals transmitted through an unknown multipath age of the possible time-frequency sparsity of the OFDMA

fading channel. We focus on blind estimation as it does no§|gnals. Infact, in the cases of low network load, for system

. . . : with guard subcarriers and/or for systems using segmentati
require any pilot sequences and is therefore applicablerte ¢ : ) . .
g . . o such as WiMAX for instance, all subcarriers may not be active
texts, such as cognitive radio for instance, where littiempr

. . . . at all times. C-ESE is a robust estimator based on the recent
signal knowledge is available. The two estimators are re- . - - L
. . : results in statistical decision and estimation theory tged
spectively based on the time-frequency sparsity of OFDMA .
; : ) .In [2, 3]. The second method, purely dedicated to OFDM
signals and on the redundancy induced by the cyclic prefix.. . . . :
signals, exploits the redundancy induced by the cyclic prefi

Numgrical simulgtions compare the performance of the tW?CP). As detailed in the sequel, the two estimation algorgh
algorithms and highlight their complementarity. complement one another as they are suitable to different con
Index Terms— OFDMA, noise variance, robust estima- texts.

tion, blind estimation. The paper is organized as follows: Section 2 presents the
OFDMA signal model. Section 3 recalls the principle of the
1. INTRODUCTION C-ESE algorithm and details its application to OFDMA. We

introduce the second noise variance estimator based on the
Orthogonal Frequency Division Multiple Access (OFDMA) CP properties in Section 4. Performance is assessed through
emerges as a promising multiple access technology for ne@imulations in Section 5. Finally, conclusions are present
generation wireless networks. It has already been adopted B Section 6.
standards such as WiMAX and 3GPP/LTE and is a candidate

for the IEEE 802.22 WRAN. OFDMA systems benefit from 2. OFDMA SIGNAL MODEL
scalability, a strong robustness to multipath and a higle-spe
tral efficiency. Assuming that an OFDMA symbol consists of upYoactive

For such systems, noise variance knowledge can be &ubcarriers, the discrete-time baseband equivalenthittes
prime importance. For instance, it enables propagation-chasignal is given by
nel estimation improvement, it can be needed for signabdete
tion and it is a.key decisio.n parameter in adaptive processes 1 Nl 9im 2 (m—D—k(N+D))
such as adaptive modulation and coding (AMC) or adaptive w(m) = \/—N Z ZEMSM@ Y 1)
power allocation. In this contribution, we focus on blind es k€Z n=0
timation as it does not require any pilot sequence and there- .g(m — k(N + D)),

fore avoids any bandwidth loss. In addition, blind estimati

is also of great interest for applications such as sensing f¢VN€re Sk, IS & sequence of random symbols assumed to
cognitive radio or communication electronic warfare where?® centered, independent and identically distributect)i.i
frame synchronization (operation required to know thetpiloSk.» répresents a i.i.d sequence of random variables valued

locations) is not always possible due to a lack of prior know! " {O, 1}_ that express the absence or presence of s_ignal activ-

edge on the signal. ity in a time-frequency slotk, n). D is the cyclic prefix (CP)
Usual moment based blind estimators, such as the M2MIEngth andn — g(m) is the rectangular pulse shaping filter.

[1] for instance, are not applicable to OFDMA as they require-€t 1:(¢)}¢=o,..... be a baseband equivalent discrete-time

higher order statistics knowledge of the transmitted sylsbo 2Yl€igh fading channel impulse response of length 1

(this statistics may vary in time and frequency in our con-With L +1 < D. The received samples of the OFDM signal

text). .m this contribution, we inve_Stigate different metis Note that for noise variance estimation there is no needftereitiate

to estimate the OFDMA noise variance. These methods atge OFDMA users.




are then expressed as work dedicated to OFDMA. Whep < 1/2,d =2, =1

ands = 0, the experimental results in [2, 3] suggest that the
asymptotic conditions about the amplitudes of the signals
can be relaxed significantly. According to these results, an
¢ estimate of the OFDMA noise standard deviation can be

whered is the carrier frequency offse, the initial arbitrary ~ computed as follows (see [3] for further details):

carrier phaser the timing offset and:(1m) the additive white  [St€P 1] Giveng observations, .. ., ¥,, compute a first
Gaussian noise such thetmn) ~ CA’ (O 03)_ estimate, termed the Essential Supremum Estimate, as a pos-

sibly local minimumo of the map defined for every positive
real values by

i(2m8 ST 46)

h(O)w(m — € — 1) + z(m),

L
y(m) =e”
=0

3. COMPLEX ESSENTIAL SUPREMUM ESTIMATE

(C-ESE) “
AN AEEZYS)
3.1. Theoretical results sup ’C:lq —0O(BV2)
te{1,...,.L}
The estimator proposed in this section derives from [2, The- D I(IYal < BeoV2)
k=1

orem 1]. This theoretical statistical result, initially tivated
by practical issues in radar and speech processing, can reﬁzﬂereL €N, B = ¢/LandO(x) = T1(z)/Tolz) =
as follows. 42 exp(—12/2)dt /(1 — exp(—22/2)) for & € [0,00). The

LetYs, Y, ..., Y, beg independent observations that aréyeager js asked to refer to [2, 3] for the computation of the
d-dimensional random vectors, each observatignbeing  gearch interval required for this minimisationdn

either the sum of some random sigrtal and independent [Step 2:] The C-ESE is then
noise X;, or noise alone. We then hawg = .5, + X

wheree;, is a random variable valued if), 1} and models m

the presence or the absenceXf We make the following Vil 2I(|Yz]| < T0V2)

assumptions: g, S and X, are independent for every — k=1

k = 1,2,...,q; noise is white and Gaussian for each N

k=1,2,...,qso thatX; ~ N (0, o9l4) wherel; stands for ZI(HY’@” < ‘70\/5)
k=1

thed x d identity matrix; the signals have finite energy and the

probabilities of presencé;({cx = 1}), of these signals are \yhere ) is some constant chosen empirically with respect to
upper-bounded by somec [0, 1). The signals are not nec- e application.

essarily i.i.d and thei.r probability distri'butions are umWn. Designed for dealing with signals whose prior probabili-
When the sample siz¢ and the amplitudes of the signals {jes of presence are less than or equal to one half, C-ESE can
become large, [2, Theorem 1] states the existence of SOMg, regarded as an alternative to the Median Absolute Devia-
suitable threshold heighf’ such that the random variable iy, (MAD) estimator, which performs poorly when the num-

>kt YRl (Y] < 00T)/ 375y IVRIP (YR < 00T) ber or the amplitudes of the outliers are too large (seemecti
is close too, * Y, (T)/Ys(T) where0 < s < r < 2, I(A) 5).

stands for the indicator function of any given evehtand
Yo(x) = [7 t2+d=1e="/2dt for any givena € [0, 00) and
anyz € [0,00). The specific convergence involved in [2,
Theorem 1] is omitted here because it will be of no use in thé-et us conside#’ samples of the received signghn). Split
sequel. It is more important to make it clear that the noiséhis set of observations intd/ disjoint frames ofvV samples
standard deviation, turns out to be the unique positive real each such thakl’ = M N. Apply an N-DFT on each frame.
value that satisfies this type of convergence. The authoi/e obtain a matriXYs nlreq1,....m1,neq0,...,N—13 Of cOMplex
analyse in [2, 3] to what extent the asymptotic conditionsvalues wheré: is the frame index and the DFT bin number
involved by this convergence can be relaxed for application

3.2. Application to OFDMA signals

. i . N-1

in radar and speech processing where observations are Yin = Z y[kN + m]e=2mnm.,

complex values and signals of interest are mostly less ptese VN =

than absent. Therefore, they experimentally address & ca

whered = 2, the upper-boungis 1/2,» = 1 ands = 0, a For each frame and each bim, we assume the ran-

rather natural choice with respect to the inequalities abovdom presence of an OFDMA frequency compongny,. We
thatr ands must satisfy. In what follows, we consider the therefore have’, , = &Sk + Xin. Similarly to Eq.
same case to show the potentiality of the method for cogfl), éx.» € {0, 1} indicates whether the OFDMA frequency
nitive radio applications even though the extension torpriocomponen@k,n is present or absent in thk¢h bin of thenth
probabilities abovd /2 should be addressed in forthcoming frame. Since the noise is white and Gaussian with standard



deviationog, the complex random variables, ,, are mu- whereM denotes the number of OFDM symbols in the ob-
tually independent and identically distributed wity, ,, ~  servation window. It can be easily shown that the estimator
CN (O, 03). Note that in the perfect synchronization case andvith the smallest variance is found far= L. The difficulty
after CP removady, ,, = cx.n andgkvn = Skn- is then to estimaté.. Cui et al. suggested an estimator in [7]
Instead of performing an estimate®j on the basis of the but it has the major disadvantage of being based on a thresh-
MN = K values we have, we follow the recommendation ofold level chosen arbitrarily. To overcome this limitatiore w
the previous subsection and split our set of observatiawos in hereafter propose a method inspired by maximum likelihood
subsets of; observations each. We compute an estimate ofstimation.

o2 on each subset witi = 2 and then average all thg> From Eq. (3)J(u) can be expressed as
obtained. In order to deal witl observations that can rea- 1
sonably be considered as mutually independent, these-obser J(u) = (1 — —> J(u+1) +&(u)
vations can be chosen randomly amongstithd” values we D—u
have. whereé(u) is a random variable that verifies, fér < u <
D -1,
3.3. Discussion 2M (D —u
%f(u) ~ Xaars (4)
0

The C-ESE is a very powerful noise variance estimation
method as it is based on very few priors. In fact, it only con-wherex3,, denotes the chi-square distribution with/ de-
siders that the signal is sparse and that the noise is white aigrees of freedom.L is then estimated using the likelihood
Gaussian and assumes mutual independency between the difaction f (X, |L = u) with X,, the multivariate observation
ferentrandom variables. No assumption is made on the signaériables defined aX,, = (£(u),{(u +1),---,£(D —1)).
distribution. However, further study of the C-ESE is reqdir The different¢(«) being independent, is given by

to get better insight into the behaviour of these estimares,

particular with regard to the constaktin Eq. (2). In addi- . b1 Y=

tion, theoretical results in [2] are established for anyrsipa L= argumax [ H f(&m)|L = u)} " (5)
degree but at this stage of investigation C-ESE implementa- m=u

tion is limited to the case where the signal is less presemt th O<u<D-1

absent which is not always verified for OFDMA signals. )
where f (£(m)|L = u) is computed thanks to Eq. (4) by

making the approximation that? ~ J(u). Note that be-
cause the observatiols, are of variable lengths, Eq. (5) is
defined as an average likelihood which is the geometric mean
of the individual likelihood elements.

4. CYCLIC PREFIX REDUNDANCY BASED
ALGORITHM

4.1. Algorithm

As in [4], we here suggest to take advantage of the OFDM.2. Discussion

signal particular structure to estimate the noise variance ) )
More precisely, we show hereafter that the noise varianc&n® CP based algorithm has the major advantage of not be-

can be estimated thanks to the redundancy induced by tH&9 dependent on the subcarrier allocation rate as it etgploi
CP. In fact, the CP use leads to(k (N + D) +m) = only OFDM (and no OFDMA) signal properties. Moreover,
z(k (N + D7) + N +m), for any integerk and anym ¢ in contrast with non data-aided estimator such as [7], ibis n

{0,---,D —1}. ltis then straightforward to see that if we based on the subjective choice of a threshold level. How-
assume perfect synchronizatidat reception (i.e- = 0 and  €Ver compared to the C-ESE method, the estimator derived
§ = 0) and a time-invariant channel over an OFDM symboli” this section suffers from the drawbacks of requiring prio
duration, we can geb — L noise variance estimates definedtime and frequency synchronization and is dependent on the
as CP and channel impulse response durations.
5oy =Ju), L<u<D-1
5. SIMULATIONS

with
1 M—1D-1 In the following, all the results are averaged ov@00 Monte
J(u) = 5D ly (k (N + D) 4+m) — Carlo runs. We consider 512-subcarrier OFDMA systems
(D —u) k=0 m=u with D = 128. The slot allocation is assumed to be i.i.d.

y(k(N + D)+ N +m) |2 The number of OFDMA sym_bols av_ailable at_reception is
3) set to 25. The Signal-to-Noise Ratio (SNR) is defined as

SNR(dB) = 10109, (E [|ex,nSk.n|?] /o¢). The simulated

2for NDA OFDM synchronization algorithms refer to [5] and [6] propagation channel is a time-invariant discrete-timencleh
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Fig. 1. MAD and C-ESE performance comparisoh = Fig. 22 NMSE of the CP based noise variance estimator
0.9D). (P({ex,n = 1}) = 0.5).

{hi(€)}¢=o,... 1, with an exponential decay profile for its non- probabilities of presence of OFDMA signals can be above 0.5.
null component (i.e E[|hx(¢)|?] = Ge=*/#for¢ =0,--- L.  Regarding the CP based method, simulations exhibit excel-
andG is chosen such thaEeL:o E[|h(€)|?] = 1). pis set to lent results. Synchronization impairments are currermilyar
32. evaluation.
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