
HIGH-RATE DISTRIBUTED MULTI-SOURCE COOPERATION
USING COMPLEX FIELD CODING
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ABSTRACT
A multisource cooperative protocol is developed capable of

achieving diversity order up to the number of cooperating users

at a high throughput. In this design each source jointly encodes

its own new information symbol with the information symbols

received from other sources at past instants. Joint encoding

is done using linear complex-field coefficients. Throughput

analysis shows gains with respect to existing multi-source

protocols and approaches the throughput of non-cooperative

schemes. Diversity analysis shows that full spatial diversity is

achievable. Simulations confirm the analytically established

assessments.

Index Terms— Cooperative systems, distributed antennas,

multiaccess communication, diversity methods.

1. INTRODUCTION

Cooperation in the uplink between sources achieves spatial di-

versity by forming a virtual antenna array (VAA) through dis-

tributed coding and signal processing. The basic practical ap-

proach to form such VAAs has been for each source to first

“locally share” information with all other sources, and then re-

lay this information, or a jointly-coded version thereof, to the

destination [2, 4, 7]. This two-stage transmission scheme is as-

sumed whenever co-located space-time codes or beamforming

algorithms are employed in a distributed fashion [1].

Clearly, transmitting in two stages, although practically-

appealing, has a price paid in low throughput per source. This

simple observation motivates this work. This paper develops a

multisource cooperative protocol that, at any given instant, lin-

early combines new information to be sent by a source with the

information received from other sources at past instants. Lin-

ear combination of finite-size constellations is possible using

linear constellation precoding (LCP) [8]. If properly designed,

the linear complex-field coefficients not only enable the trans-

mission of multiple information symbols at the same time, they

also enable spatial diversity. Theoretical analysis corroborated

with simulations demonstrate the performance gains of this pro-

tocol.
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2. PROTOCOL DESCRIPTION

Consider a set of sources {Sn}N
n=1 willing to communicate

with a common access point or destination. Information bits

of each source are modulated and carried over constellation

symbols. Let xn := [xn(0), . . . , xn(K − 1)]T denote the se-

quence of K symbols, each drawn from a finite-size constel-

lation set As at source Sn, n = 1, . . . , N . Transmissions are

arranged in K + 1 phases. Assume, for now, that at Phase-k,

k = 1, . . . , K − 1, each source, say Sn, n = 1, . . . , N , has

available the set of symbols {xm(k − 1)}N
m=1,m �=n from all

other sources. Source Sn constructs a symbol sn(k), which is

a linear combination of its k-th constellation symbol xn(k) and

{xm(k − 1)}N
m=1,m �=n. The resulting symbol sn(k) at source

Sn is given by (see Table 1)

sn(k) = θnnxn(k) +
N∑

m=1
m�=n

θnmxm(k − 1) (1)

where coefficients θn1, . . . , θnN are designed such that, for any

two vectors x, x̃ ∈ AN
s

|θT
n (x − x̃)| �= 0, ∀n (2)

where θn := [θn1, . . . , θnN ]T . This condition guarantees that

sn(k) in (1) is unique for every possible different set of symbols

xn(k) and {xm(k− 1)}N
m=1,m �=n. This so-called identifiability

criterion will be instrumental in this protocol.

Symbol sn(k) is transmitted by source Sn to the destina-

tion. Transmissions are carried in separate time slots to avoid

interference, distributed synchronization tasks and full-duplex

capabilities. The total duration of Phase-k is N channel uses

(one per source). Let yn(k) (ynm(k)) denote the signal received

at the destination (Sm) when Sn transmits sn(k). Signals yn(k)
and ynm(k) are given by

yn(k) = hn
√

ρksn(k) + wn(k) (3)

ynm(k) = hnm
√

ρksn(k) + wnm(k) (4)

where hn ∼ CN (0, σ2
nγ̄) (hnm ∼ CN (0, σ2

nmγ̄)) is the

Rayleigh fading coefficient corresponding to the Sn-to-destina-

tion (Sn-to-Sm) link; wn(k) (wnm(k)) is the noise term, nor-

malized to be CN (0, 1); and ρk weights the transmitted av-

erage power. The instantaneous output signal-to-noise ratio

(SNR) of each Sn-to-destination (Sn-to-Sm) link is defined

as γnk := ρk|hn|2 (γnmk := ρk|hnm|2) with expected value

γ̄nk = ρkσ2
nγ̄ (γ̄nmk = ρkσ2

nmγ̄).
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Table 1. High-rate distributed coding strategy (N = 3).
Phase-k − 1 Phase-k Phase-k + 1

S1 θ11x1(k−1)+θ12x2(k−2)+θ13x3(k−2) θ11x1(k)+θ12x2(k−1)+θ13x3(k−1) θ11x1(k+1)+θ12x2(k)+θ13x3(k)

S2 θ21x1(k−2)+θ22x2(k−1)+θ23x3(k−2) θ21x1(k−1)+θ22x2(k)+θ23x3(k−1) θ21x1(k)+θ22x2(k+1)+θ23x23(k)

S3 θ31x1(k−2)+θ32x2(k−2)+θ33x3(k−1) θ31x1(k−1)+θ32x2(k−1)+θ33x3(k) θ31x1(k)+θ32x2(k)+θ33x33(k+1)

After Phase-k, all sources have received a signal from all

other sources. Source Sm uses ynm(k) received from Sn to ob-

tain a estimate x̂ML
nm (k) of xn(k) using the following maximum

likelihood (ML) criterion (c.f. (4))

x̂ML
nm (k) =

arg min
x∈As

∥∥∥∥∥∥∥ynm(k)−hnm
√

ρk

⎛
⎜⎝θnnx+

N∑
p=1
p �=n

θnpxp(k − 1)

⎞
⎟⎠

∥∥∥∥∥∥∥
2

(5)

where hnm is assumed to be known at Sm. For simplic-

ity of explanation, we will here assume that x̂ML
nm (k) =

xn(k), ∀m,n, k; i.e., sources incur in no detection error at

any transmission phase. This assumption will be revisited in

the next subsection, were inter-source errors will be incorpo-

rated1.

After Phase-k, all sources know {xn(k)}N
n=1, which are

all the new information symbols sent during Phase-k. With

{xm(k)}N
m=1,m �=n and xn(k + 1) available, Sn proceeds to

Phase-k + 1.

The transmission protocol is simply initialized by transmit-

ting sn(0) = xn(0), ∀n during Phase-0 and finishes at Phase-K
by transmitting sn(K) ∀n given by

sn(K) =
N∑

m=1
m�=n

θnmxm(K − 1). (6)

Notice that sn(K) only carries past information symbols.

The purpose of sending sn(K) is to guarantee that the last-

transmitted symbols are also “diversified” through the channel

in the same way the previous symbols were. Notice that co-

efficients ρ0 and ρK should be properly adjusted so that sym-

bols xn(0) and xn(K − 1), transmitted during both Phase-0

and Phase-K, respectively, suffer same error performance as

xn(1), . . . , xn(K − 1), ∀n.

This protocol described above requires (K + 1)N channel

uses to transmit K symbols per source. Defining the throughput

η as the number of transmitted information symbols per source

per channel use (spspcu), the throughput of this strategy is then

η =
K

(K + 1)N
spspcu. (7)

For large K, η approaches 1/N , which is the throughput of

non-cooperative sources transmitting over orthogonal channels.

The throughput (7) is considerably higher than that of the MSC

strategies in [1, 4] where throughputs of 1/2N spspcu were at

best achieved.
1Note however that in the uplink sources may be closer to each other than

with respect to the destination. Thus, assuming better channel between sources

than between sources and destination is a legitimate assumption.

2.1. Inter-source errors

Assume a rather more realistic scenario where the estimated

symbols at Sm at any given instant k, {xML
nm (k)}N

n=1,n �=m in

(5) differ from xn(k), ∀k, n �= m. The forwarding strategy now

has to be modified to account for these errors. For that matter,

we will resort to selective-forwarding protocols [1, 2, 4]. From

{xML
nm (k)}N

n=1,n�=m, define Dm(k) := {n|xML
nm (k) = n, n �=

m} as the set of symbol indexes source Sm correctly detected

at the k-th instant2. Note that set Dm(k) does not include in-

dex m. Sources will broadcast one extra bit to inform other

sources and the destination whenever x̂ML
nm (k) �= xn(k). Sm

will jointly encode the correctly-received symbols with the own

next information symbol xm(k + 1). Using Dm(k), sm(k + 1)
at source Sm is given by (c.f. (1))

sm(k + 1) = θmmxm(k) +
∑

p∈Dm(k)

θmpxp(k) (8)

Note that sm(k + 1) will always be non-zero even if Dm(k) =
∅. Symbol sm(k + 1) is transmitted as in (3) and (4).

Since the transmitted symbols have been modified, so has to

be the detection rule in (5). Define Cnm(k) := Dn(k)∩Dm(k)
as the set of symbol indexes correctly decoded by both Sn and

Sm. Likewise, define Fnm(k) := Dn(k)−Dm(k) as the set of

symbols correctly decoded by Sn but that Sm failed to decode.

Source Sm now employs the following decoder (c.f. (5))

x̂ML
nm (k) = arg min

x̄∈A|Fnm(k−1)|+1
s

‖ynm(k)

−hnm
√

ρk

⎛
⎝θnnx̄n+

∑
p∈Fnm(k−1)

θnpx̄p +
∑

q∈Cnm(k−1)

θnqxq(k−1)

⎞
⎠
∥∥∥∥∥∥
2

(9)

where x̄p := [x̄]p. Notice that the identifiability criterion in

(2) guarantees that the detector in (9) has a unique minimum

with probability 1. From x̂ML
nm (k) Sm can extract x̂ML

nm (k) =
[x̂ML

nm (k)]n and update Dm(k). With {x̂ML
nm (k)}N

n=1,n �=m and

Dm(k) Sm can proceed to Phase-k + 1.

2.2. Decoding at the destination

Assuming knowledge of the Sn − D link ∀n, the ML detec-

tion rule that jointly detects all information symbols sent by all

sources, compactly expressed as the set x = {{xn(k)}K
k=1}N

n=1,

2An error detection code is used here. As in, e.g., [1, 2, 4], this error detec-

tion code is assumed perfect and incurs in no bandwidth efficiency loss.
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is the following:

x̂ML = arg min
x∈AKN

s

{
N∑

n=1

‖yn(0) − hn
√

ρ0xn(0)‖2

+
K−1∑
k=1

N∑
n=1

∥∥∥∥∥∥yn(k)−hn
√

ρk

⎛
⎝θnnxn(k)+

∑
m∈Dn(k−1)

θnmxm(k−1)

⎞
⎠
∥∥∥∥∥∥
2

+
N∑

n=1

‖yn(K) − hn
√

ρK

∑
m∈Dn(K−1)

θnmxm(K−1)‖2

⎫⎬
⎭ (10)

where the first and last summands correspond to the initial-

ization and finalization phases Phase-0 and Phase-K, respec-

tively. The search in (10) is performed over the set of con-

stellation codewords x size |As|KN . This is a general rule for

performance-analysis purposes. Its complexity can be reduced.

Notice that symbols overlap across phases introducing memory

in the transmitted block. Exploiting the fact that the constella-

tion is finite, the Viterbi algorithm can thus invoked to reduce

the search over |As|N possible codewords in K stages [3].

3. PERFORMANCE ANALYSIS

We start from the pairwise error probability (PEP), Pr(x →
x̃|h, h̃) defined as the probability of decoding a codeword

x̃ ∈ AKN
s different from the actual transmitted one x and con-

ditioned on the fading coefficients h := [h1, . . . , hN ]T between

sources and the destination and h̃ := [h11, . . . , h1N , . . . , hNN ]T

between sources. The diversity order d of the system is defined

as the slope of the logarithm of the average PEP with respect

to the channel coefficients as the logarithm of the SNR goes to

infinity; i.e.,

d := min
x,x̃ �=x

⎧⎨
⎩− lim

γ̄→∞

log Eh,h̃

[
Pr(x → x̃|h, h̃)

]
log γ̄

⎫⎬
⎭ . (11)

The diversity definition in (11) is independent of σ2
1 , . . . , σ2

N

(σ2
11, . . . , σ

2
NN ), the path-loss coefficients of every source-

destination (source-source) link or ρ0, . . . , ρK , the coefficients

that weight the average transmitted power.

3.1. Error-free inter-source links

For simplicity in exposition, first consider the case when

no inter-source errors occur. Define the error vector e :=
[eT (0), . . . , eT (K − 1)]T with e(k) := x(k)− x̃(k). Note that

e has at least one non-zero entry. Using the Chernoff bound,

the PEP (which in the error-free case is independent of h̃) can

be bounded as (see also [1, 8])

Pr(x → x̃|h) ≤ exp
(
α‖Γeh‖2

)
(12)

for some finite constant α and with Γe being the pairwise error

matrix defined as:

Γe :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

diag(e(0))
diag(Dθe(1) + Θ̃e(0))
diag(Dθe(2) + Θ̃e(1))

...

diag(Dθe(K − 1) + Θ̃e(K − 2))
diag(Θ̃e(K − 1))

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(13)

where the N×N matrices Dθ and Θ̃ are composed of the diag-

onal and off-diagonal entries of Θ, respectively, and [Θ]nm :=
θnm.

The distribution of h is h ∼ CN (0,Dσ2
n
γ̄), where Dσ2

n
:=

diag([σ2
1 , . . . , σ2

N ]). Computing the expected value of (12) wrt

h we have that

Eh[Pr(x → x̃|h)] ≤ (βγ̄)rank(Γe) (14)

for some finite constant β. Plugging (14) in (11), the diversity

order d is related to the rank of Γe as stated in the following

proposition3.

Proposition 1 Consider the LCP coefficients θnm ∀n,m =
1, . . . , N designed to hold (2). The diversity order as defined in
(11) of the protocol defined in Section 2 is

d := min
x,x̃ �=x

{rank(Γe)} = N (15)

Thus, in the error-free case, this protocol achieves the maxi-

mum diversity order, equal to the number of sources N .

3.2. Errors in inter-source links

The diversity order in this case is found in two steps. Firstly, the

probability of having a given set of error events at the sources

is found. Secondly, the PEP at the destination given that this

set of errors happened (which we name the error-conditional

PEP), is found. Define En(k) as the set of sources that failed

to detect xn(k); i.e., En(k) := {m|n /∈ Dm(k),m �= n}.

Notice that by construction n /∈ En(k). The set of all decod-

ing errors at all transmissions times are packed in the super-set

E := {{En(k)}N
n=1}K−1

k=0 . Next, define Pr(x → x̃|h, E) as the

PEP at the destination conditioned on a set E of decoding errors

at the sources. Likewise, define Pr(E|h̃) as the probability of

having a set E of errors, conditioned on the inter-source chan-

nel coefficients h̃. The PEP can be expressed as a marginal-

ization over all possible error events; i.e. Pr(x → x̃|h, h̃) =∑
∀E Pr(x → x̃|h, E)Pr(E|h̃) with expected value

Eh,h̃

[
Pr(x → x̃|h, h̃)

]
=∑

∀E
Eh[Pr(x → x̃|h,E)]Eh̃

[
Pr(E|h̃)

]
. (16)

Both factors in the right-hand side of (16) can be found

independently for a given (fixed) error event E . First we

start with Eh[Pr(E|h̃)]. From the detector (9), and after ap-

plying the Chernoff bound, the conditional probability that

source Sm fails to detect xn(k) can be bound as Pr(m ∈
En(k)|h̃) ≤ exp

(
αnm(k)|hnm|2) for some finite coeffi-

cient αnm(k). Due to conditional independence, the con-

ditional probability of having E errors is thus Pr(E|h̃) ≤
exp

(∑K−1
k=0

∑N
n=1

∑
m∈En(k) αnm(k)|hnm|2

)
with expected

value

Eh̃

[
Pr(E|h̃)

]
≤ (β′γ̄)

∑ N
n=1|∪K−1

k=0 En(k)|

≤ (β′γ̄)maxn{|∪K−1
k=0 En(k)|} (17)

3Proofs for all the propositions in this paper are omitted due to space limi-

tations.

2635



5 10 15 20
10−5

10−4

10−3

10−2

10−1

100

SNR

B
ER

[4] QPSK (0.5 bpspcu)
[4] 16−QAM (1 bpspcu)
High−rate BPSK (0.5 bpspcu)
High−rate QPSK (1 bpspcu)
No coop BPSK (0.5 bpspcu)
No coop QPSK(1 bpspcu)

Fig. 1. BER for N = 2 of the proposed protocol vs. [4] vs.

non-cooperative case at different throughputs.

where the second inequality holds at high SNR and for some

finite constant β′.

We turn now to the error-conditional PEP at the destination

Pr(x → x̃|h, E). Using again the Chernoff bound, Pr(x →
x̃|h, E) ≤ exp

(
α′ ‖Γe(E)h‖2

)
where Γe(E) is constructed

as in (13) setting θnmem(k) = 0 whenever m ∈ En(k). As

in (14), the expected value of the conditional PEP is given by

Eh̃ [Pr(x → x̃|h, E)] ≤ (β′′γ̄)−rank(Γe(E)), for some finite con-

stant β′′. Combining this result with (17), a bound on (16) can

be found to establish the diversity order of this scheme, as stated

in the following proposition.

Proposition 2 Consider the coefficients θnm ∀n,m = 1, . . . , N
designed to hold (2). The diversity order as defined in (11) of
the protocol defined in Section 2.1 is

d := min
x,x̃ �=x,E

{
rank(Γe(E))+max

n

{∣∣∪K−1
k=0 En(k)

∣∣},N
}

=N (18)

Thus, the diversity order is independent of the sources’ error

events E and is equal to the number of sources N .

4. SIMULATIONS

In this section we present simulations that test the error per-

formance of the proposed cooperative protocol. Matrix Θ is

taken from [8]. Sources-source links are assumed to have the

same average SNR (γ̃k := γ11k = . . . = γNNk), and so

are the source-destination links (γk := γ1k = . . . = γNk).

However, the SNR in the source-destination link is 3dB greater

than source-source SNR (γk = γ̃k + 3dB). The block length is

K = 100 and the Viterbi algorithm is employed for decoding.

Fig. 1 shows the average bit error rate (BER) as a func-

tion of the average SNR for N = 2 sources. Two cases with

rates of 0.5 and 1 bits per source per channel use (bpspcu) are

considered, employing BPSK and QPSK modulations, respec-

tively. For reference, the BER when sources are not cooperating

is also depicted. Also, the BER when sources are implement-

ing the distributed protocol in [4] is included. In this case, for

0 5 10 15
10−4

10−3

10−2

10−1

100

SNR

B
ER

[4] QPSK (1/3 bpspcu)
[4] 16−QAM (2/3 bpspcu)
High−rate BPSK(1/3 bpspcu)
High−rate QPSK(2/3 bpspcu)

Fig. 2. BER for N = 3 of the proposed protocol vs. [4] at

different throughputs.

a fair comparison, we plot [4] when using QPSK and 16-QAM

modulations to achieve the same throughput of 0.5 and 1 bp-

spcu, respectively. All protocols transmit with the same aver-

age transmit power. We can verify that the slope of the BER

is fixed to 2 for both protocols with a higher coding gain of the

one developed here due to the use of lower-order constellations.

The new design clearly outperforms the non-cooperative case

for the same system resources. This same behavior is observed

in Fig. 2 when N = 3 sources are considered with throughputs

of 1/3 and 2/3 bpspcu.
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