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ABSTRACT

In an earlier work [1], we used transform methods from the

theory of random matrices to analytically compute the asymp-

totic eigendistribution of the error covariance matrix of the

single-measurement RLS filter. When we have a multiplicity

of measurements, as happens in extended RLS filtering, the

analysis is much more complicated. In this paper we study

the multiple measurement case and obtain a system of two

coupled equations for the Stieltjes transform of the asymp-

totic eigendistribution. Numerical solutions of this system

very well predict the actual asymptotic eigendistribution for

systems with as low as n = 10− 20 state dimensions.

Index Terms— RLS algorithm, Kalman filter, Stieltjes

transform, eigendistribution, random matrix

1. INTRODUCTION

The Recursive-Least-Squares (RLS) algorithm recursively

minimizes the sum of squared errors in estimating an un-

known state vector. In fact, the RLS algorithm is nothing

other than a special case of Kalman filtering. While the

Kalman filter with time-invariant coefficient matrices is well-

studied in the literature, not much is known about its steady-

state and transient behavior in the time-varying case [2, 3].

Even for a simple RLS filter with one measurement per time

instance, the mean square error performance is not known

except under assumptions which are often not too reasonable.

In our earlier work [1], we used ideas from random ma-

trix theory to establish a framework for analyzing the single

measurement RLS filter with random regressor vectors, un-

der two main assumptions: (a) the regressors represent a sta-

tionary distribution, and (b) the state dimension is large (al-

though the results are valid for dimensions as low as 10). We

found the steady-state eigendistribution of the error covari-

ance matrix in various scenarios. However the results were
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only valid when the number of measurements at each time

step was small compared to the state vector size. In this paper,

we present the more complicated analysis for the extended
RLS algorithm [2] where the number of measurements is al-

lowed to grow with n.

Throughout the paper, we remain in the linear state-space

model framework [4],{
xi+1 = xi + ui

yi = Hixi + vi
, (1)

in which xi ∈ Rn, the state vector we want to estimate, un-

dergoes a random walk and ui and vi denote the zero-mean

process and measurement noises, respectively. yi ∈ Rm is

the measured signal and Hi is the m × n regressor matrix

which is indeed time-variant and often random. We will as-

sume that all the processes are stationary and their statistics

follow,

E

[
ui

vi

] [
uT

j vT
j

]
=

[
qI 0
0 rI

]
δij , (2)

It is well-known that the RLS recursive estimate of xi can be

expressed as,

x̂i+1 = x̂i + PiH
∗
i (rI + HiPiH

∗
i )
−1 (yi − Hix̂i), (3)

and the estimation error covariance, Pi = E(xi − x̂i)(xi −
x̂i)T , satisfies a Riccati recursion,

Pi+1 = Pi − PiH
∗
i (rI + HiPiH

∗
i )
−1

HiPi + qI, P0. (4)

The above Riccati recursion is nonlinear and time-variant and,

in general, does not converge. Furthermore, when the Hi

are random, it is a random matrix recursion. When the Hi

are stationary—an assumption we shall make—it may be ex-

pected that Pi will converge to a matrix-valued stationary ran-

dom process. In this case, the stationary distribution of Pi,

and its statistics, such as EPi or EtrPi, will be of interest.

This is what we intend to analyze in this paper.

The rest of the paper is organized as follows. In Section

2 we present a few results from random matrix theory which
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have been used in our work. In Section 3 we briefly review

our earlier results on RLS filtering with single measurement

in various scenarios. Section 4 contains our new result for

the RLS algorithm with multiple measurements. Finally sim-

ulation results are presented in Section 5 which demonstrate

a very close prediction of the eigendistribution through our

method.

2. PERTINENT RESULTS FROM RANDOM MATRIX
THEORY

In this section we give a brief overview of pertinent results

from random matrix theory which will be used in this work.

More comprehensive reviews on the topic can be found in

[1, 5]

For an n × n random matrix M, whose elements have

some joint probability distribution, the cumulative eigenvalue

distribution can be defined as,

FM(x) =
1
n

n∑
l=1

Pr {λl(M) ≤ x} , (5)

where λl(M) is the l-th eigenvalue of M. A probability den-

sity function can be assigned to the cumulative function de-

fined as above. We will refer to this density function, fM(λ),
as the eigendistribution of the random matrix M. Basically,

fM(λ) is the marginal distribution of one randomly selected

eigenvalue of M.

In many cases, the eigendistribution of a random matrix

demonstrates interesting properties. When the matrix dimen-

sions are allowed to grow, one can often obtain simple closed

form results for the eigendistribution which can be interpreted

as universal laws which are independent of the underlying

distributions—counterparts to the central limit theorem for

scalar random variables.

It should also be mentioned that in the case of random ma-

trices, even for dimensions as low as n = 10, these asymp-

totic results are very close predictions of the eigendistribution

(This is due to the fact that we are essentially averaging over

n2 entries.)

Many results in the theory of large random matrices are

expressed in terms of some transform of the eigendistribu-

tion. A complete list of these transforms and examples of

their applications can be found in [5]. The most frequently

appearing one, the Stieltjes transform, was first used in the

seminal work of Marcenko and Pastur [6]. Given a probabil-

ity density function fλ(λ), its Stieltjes transform is defined

as,

Sλ(z) = E

[
1

λ− z

]
. (6)

When fλ(λ) represents the eigendistribution of a random

matrix, there exist equivalent definitions of the Stieltjes trans-

form which turn out to be extremely useful. In fact, given a

random matrix M, the Stieltjes transform of its eigendistribu-

tion (which we will also denote as the Stieltjes transform of

the matrix itself) can be expressed as,

SM(z) = − d

dz
E

1
n

log det(M− zI) (7)

or equivalently,

SM(z) = E
1
n

tr (M− zI)−1
(8)

Having the Stieltjes transform, we can retrieve the dis-

tribution uniquely through the well-known inversion formula

[7],

fM(λ) = lim
ω→0+

1
π

Im [SM(λ + jω)] . (9)

An important property of the Stieltjes transform which

makes it very useful in random matrix theory is the self-

averaging property which is stated in the following lemma

[8].

Lemma 1 (Self-averaging property). Let A be an n× n pos-
itive semidefinite random matrix. As n → ∞ the eigendistri-
bution of A converges almost surely to its mean value, i.e.,

lim
n→∞

1
n

tr(A− zI)−1 = SA(z) a.s. (10)

(Note the absence of the expectation.) Furthermore, for any
n-dimensional vector x with i.i.d. zero-mean, unit-variance
elements which is independent of A, we have

lim
n→∞

1
n

xT (A− zI)x = SA(z) a.s. (11)

The above lemma can be intuitively verified by comparing

it to the definition (8).

3. RESULTS ON SINGLE-MEASUREMENT RLS
FILTERS

The steady-state eigendistribution of the error covariance ma-

trix for RLS adaptive filters with a single measurement at each

time step has been analyzed in [1] for three different cases.

Namely, temporally white regressors, shift-structured regres-

sors, and RLS filter with intermittent observations, which is

inspired by the recent interest in the estimation and control

over lossy networks [9, 10].

It is shown that the Riccati recursion of (4) with m = 1
and hi’s being independent of each other, having i.i.d. zero-

mean unit-variance entries, converges for q = γ
n and n � 1

to a stationary matrix-valued random process whose eigendis-

tribution’s Stieltjes transform satisfies,

γS(z) + c = − log
(
r − z − z2S(z)

)
, (12)

where c is a constant which can be found numerically by

insisting that the distribution integrates to one. It is further
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shown that the same is true when the regressors have a shift

structure,

hi =
[

ui ui−1 · · · ui−n+1

]
, (13)

where the ui are drawn from a zero-mean, unit-variance white

process.

For the RLS filter with temporally white regressor, and

intermittent single measurements, where the yi’s may be lost

independently with probability ε, it is shown that the asymp-

totic steady-state Stieltjes transform satisfies

γS(z) + c = −(1− ε) log
(
r − z + z2S(z)

)
, (14)

where c is again a constant which is determined by insisting

that the inverse Stieltjes transform should integrate to one.

These results can readily be extended to the case of mul-

tiple measurements as long as the number of measurements,

m, is much less than the state vector size, n (m � n). When

m is comparable to n, the results are not valid and a more

complicated analysis is required which is the subject of this

paper.

4. ANALYZING THE EXTENDED RLS FILTER

To this end, we find an expression for the Stieltjes transform

of the eigendistribution of Pi, as i →∞, which in turn deter-

mines the eigendistribution and important statistical measures

of the process Pi, such as EtrPi. As mentioned earlier, we will

also assume a large dimensional state vector which allows us

to benefit from the large random matrix theory. The following

theorem presents the main result.

Theorem 1. Consider the random Riccati recursion in (4)
where m, n → ∞ while m

n = β. As i → ∞, the Stielt-
jes transform of the eigendistribution of Pi converges to the
steady-state Stieltjes transform, S(z), which satisfies the pair
of implicit equations

S(z + q) =
t(z)

1− zt(z)
− 1

(1− zt(z))2
S

(
z

1− zt(z)

)
(15)

t(z) =
β

r − z
1−zt(z) + z2

(1−zt(z))2 S
(

z
1−zt(z)

) . (16)

The above equations can be solved numerically to obtain
S(z) and eventually fλ(λ).

Proof. After bringing qI to the LHS of (4), we use the defini-

tion (7) to compute the Stieltjes transform of both sides,

Si+1(z + q) = (17)

− 1
n

E
d

dz
log det

(
Pi − PiH

∗
i (rI + HiPiH

∗
i )
−1HiPi − zI

)

After rearranging the terms, and using the fact that det(I −
AB) = det(I− BA), the RHS can be written as,

Si+1(z + q) = Si(z)− 1
n

E
d

dz
log det (rI+

HiPiH
∗
i − HiPi(Pi − zI)−1PiH

∗
i

)
(18)

after some straightforward algebraic manipulations we ob-

tain,

Si+1(z + q)− Si(z) = (19)

= − 1
n

E
d

dz
log det

⎛
⎜⎜⎝rI− Hi (zI + z2(Pi − zI)−1)︸ ︷︷ ︸

Δ
=Di(z)

H∗i

⎞
⎟⎟⎠ ,

Since Hi has an isotropic distribution, we can assume without

loss of generality that Pi is diagonal. Therefore Di(z) which

is defined above will be diagonal. By computing the deriva-

tive in (19) we have,

RHS =
1
n

Etr
[
HiD

′
i(z)H∗i (rI− HiDi(z)H∗i )

−1
]
, (20)

which can be written as

RHS =
1
n

Etr
[
D′i(z)D−1

i (z)×((
D−1

i (z)− H∗i Hi

r

)−1

D−1
i (z)− I

)]
. (21)

Note that the j-th diagonal entry of Di(z) is just

di,j = z +
z2

λj − z
=

λjz

λj − z
, (22)

and since we are looking for the marginal distribution of one

eigenvalue of Pi, it does not matter which eigenvalue we are

looking at. Therefore the second term in (21) can be ex-

pressed as,

− 1
n

EtrD′i(z)D−1
i (z) =

1
z

E

(
1 +

z

λ− z

)
=

1
z

+ Si(z).

(23)

For computing the first term, which is more challenging, we

break Di(z) and Hi in the form,

Di(z) =
[

d1 0
0 D2

]
, Hi =

[
h1 H2

]
, (24)

where h1 is an m× 1 vector. We have dropped the index i for

simplicity. Doing so, it is not hard to show that this term can

be written as,

A = E
d′1
d2
1

1
d−1
1 − h∗1 (rI− H2D2H∗2)

−1
h1︸ ︷︷ ︸

Δ
=t(z)

, (25)
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which can be shown to be equal to,

A =
1

z(1− zt)
+

1
(1− zt)2

Si(
z

1− zt
). (26)

Replacing (23) and (26) into (18) yields (15). Therefore it

remains to compute,

t(z) =
1
n

tr (rI− H2D2H∗2)
−1

. (27)

We break H2 as,

H2 =
[

h21

H22

]
, (28)

and using the same techniques by which (25) was obtained,

t(z) can be written as,

t(z) =
m

n

1

r − h21

(
D−1

2 − 1
r H∗22H22

)−1
h∗21

. (29)

Invoking the self-averaging property, we can rewrite the

above expression as,

t(z) =
m

n

1
r − E

1
d−1
2 −t(z)

, (30)

which can be simplified further by noting that

E
1

d−1
2 − t(z)

= E
1

λ−z
λz − t(z)

=
z

1− zt
E

λ

λ− z
1−zt

. (31)

Therefore,

E
1

d−1
2 − t(z)

=
z

1− zt
+

z2

(1− zt)2
Si

(
z

1− zt

)
, (32)

which together with (30) result in (16).

Now one has to solve the equations (15) and (16) numer-

ically in order to find S(z). Then by using the inverse for-

mula of the Stieltjes transform (9) the eigendistribution in the

steady-state case can be obtained.

5. SIMULATIONS

Figure 1 compares the theoretically predicted curve (through

Theorem 1) with the eigendistribution obtained empirically

for m = 15 and n = 30. In order to find the theoretical

curve we have numerically solved the coupled equations de-

scribing S(z) and t(z) on a grid in the complex plane. It can

be seen that our framework closely captures the behavior of

the eigendistribution. The results are plotted for r = 0.5 and

q = 0.48.

 

 

Fig. 1. The steady-state error covariance eigendistribution for

the extended RLS filter with m = 15 for n = 30, r = .5, and

q = 0.48
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