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LINEAR TRANSFORMATIONS AND

RESTRICTED ISOMETRY PROPERTY

LESLIE YING AND YI MING ZOU

Abstract. The Restricted Isometry Property (RIP) introduced
by Candés and Tao is a fundamental property in compressed sens-
ing theory. It says that if a sampling matrix satisfies the RIP of
certain order proportional to the sparsity of the signal, then the
original signal can be reconstructed even if the sampling matrix
provides a sample vector which is much smaller in size than the
original signal. This short note addresses the problem of how a
linear transformation will affect the RIP. This problem arises from
the consideration of extending the sensing matrix and the use of
compressed sensing in different bases. As an application, the re-
sult is applied to the redundant dictionary setting in compressed
sensing.

1. Introduction

In Compressed Sensing (CS), one considers the problem of recovering
a vector (discrete signal) x ∈ R

N from its linear measurements y of the
form

yi =< x, ϕi >, 1 ≤ i ≤ n,(1.1)

with n << N . If x is sparse, CS theory says that one can actually
recover x from y which is much smaller in size than x by solving a
convex program with a suitably chosen set of sampling row vectors
{ϕi|1 ≤ i ≤ n} [1][2][3]. The linear system (1.1) can be written in the
form of matrix multiplication

y = Φx,(1.2)

where Φ is an n × N matrix formed by the row vectors ϕi called the
sampling matrix. One of the Conditions that ensures the performance

Date: 12/16/08 (This version).
L. Ying is with the Department of Electrical Engineering, University of Wiscon-

sin, Milwaukee, WI 53201, USA, email: leiying@uwm.edu.
Y. M. Zou is with the Department of Mathematical Sciences, University of Wis-

consin, Milwaukee, WI 53201, USA, email: ymzou@uwm.edu.
This paper has been submitted to ICASSP 09.

1

http://arxiv.org/abs/0901.0541v1


2 LESLIE YING AND YI MING ZOU

of the sampling matrix Φ is the RIP. A matrix Φ ∈ R
n×N is said to

satisfy the RIP of order k ∈ N and isometry constant δk ∈ (0, 1) if

(1− δk)‖z‖22 ≤ ‖ΦT z‖22 ≤ (1 + δk)‖z‖22, ∀z ∈ R
|T |,(1.3)

where T ⊂ {1, 2, . . . , N} satisfying |T | ≤ k, and ΦT denotes the ma-
trix obtained by retaining only the columns of Φ corresponding to the
entries of T . Condition (1.3) is equivalent to the condition that all the
matrices Φt

TΦT have their eigenvalues in [1 − δk, 1 + δk]. For any ma-
trix X ∈ R

r×s and any k ∈ N, we denote the corresponding isometry
constant of X by δk(X). If there is no confusion, we will just write δk.
In particular, we always use δk for the matrix Φ.
A theorem due to Candés, Romberg, and Tao [4] says that if Φ

satisfies the RIP of order 3k, then the solution x̂ of the following convex
minimization problem

min‖x‖1 subject to Φx = y,(1.4)

satisfies (see also [5])

‖x− x̂‖2 ≤
C2σk(x)√

k
,(1.5)

where σk(x) is the ℓ1 error of the best k-term approximation, and C2

is a constant depending only on δ3k ∈ (0, 1).1

A condition that ensures a random matrix satisfies the RIP with
high probability is given by the concentration of measure inequality.
An n × N random matrix Φ is said to satisfy the concentration of
measure inequality if for any x ∈ R

N ,

P (|‖Φx‖22 − ‖x‖22| ≥ ε‖x‖22) ≤ 2e−nc0(ε),(1.6)

where ε ∈ (0, 1), and c0(ε) is a constant depending only on ε.
The random matrices Φ = (rij) generated by the following proba-

bility distributions are known to satisfy the concentration of measure
inequality with c0(ε) = ε2/4− ε3/6 [5]:

rij ∼ N

(

0,
1

n

)

,

(1.7) rij =











1√
n

with probability 1/2

− 1√
n

with probability 1/2
.

1It should be noted that the RIP is only a sufficient condition for reconstruction.
If Φ satisfying the RIP, cA may not satisfy the RIP for c 6= 0. However, it is clear
that both A and cA lead to similar sparse recovery using ℓ1 program. However,
this issue is beyond the current scope [6].
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According to Theorem 5.2 in [5]2, for given integers n and N , and
0 < δ < 1, if the probability distribution generating the n×N matrices
Φ satisfies the concentration inequality (1.6), then there exist constants
c1, c2 > 0 depending only on δ such that the RIP holds for Φ with the
prescribed δ and any

k ≤ c1n/ log(N/k)(1.8)

with probability ≥ 1− e−2c2n. Furthermore, this RIP for Φ is universal
in sense that it holds with respect to any orthogonal basis used in the
measurement.
There are also deterministic constructions of matrices satisfying the

RIP [7][8][9][10].
For application purposes, one often needs to analyze the RIP con-

stants of the products of a matrix Φ with known RIP constant δ and
other matrices. For example, when one considers different bases or
redundant dictionaries under which the signals of interest are sparse,
matrices of the form ΦB needs to be analyzed [2][11], where B is given
by the basis or the dictionary. For another example, if the size of Φ is
n×N with n < N , one would like to extend Φ to AΦB of size m× q
with m < n < N < q if possible, since that gives a further reduction on
the number of measurements one needs to collect: for Φ, the number
of measurements is n; while for AΦB, the number of measurements is
m.
These situations can be formulated under a more general framework

by asking the following question: If a matrix Φ of size n×N satisfies the
RIP with a given isometry constant 0 < δ < 1 (with certain probability
if Φ is random), and A,B are given matrices of sizes m× n and N × q
respectively, then what is the isometry constant of the matrix AΦB?
In section 2, we first show that if all Φ, A, and B are random and

satisfy the concentration of measure inequality, then AΦB satisfies the
concentration of measure inequality, therefore it has RIP. Then we
observe that if deterministic matrix is involved, the problem is more
complicated, but it can still be analyzed by using the SVDs of A and
B. It is not possible to multiply by a deterministic A from the left
to achieve more reduction on the number of measurements without
further assumption. Our result shows that it is possible to extend the
matrix Φ by multiplying a deterministic B from the right to extend Φ
if Φ is random, though the isometry constant will be changed. This

2In the proof given in [5], the constant c1 was first chosen such that a :=
c0(ε)δ/2−c1[1+(1+log 12

δ
)/ log N

k
] > 0, then the constant c2 was chosen such that

0 < c2 < a. Thus the constants depend also on ε.
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result can be applied to redundant dictionary setting to give a different
approach for using CS with redundant dictionaries.

2. Main result

We first consider the random case. Let Φ be an n × N matrix sat-
isfying the concentration inequality (1.6) with constant ε, and let A
(respectively B) be a random matrix size m × n (respectively N × q)
satisfying the concentration inequality (1.6) with ε1 (respectively, ε2).
Then we have:

Theorem 2.1. Assume that all ε, ε1, ε2 < 1/3. The matrix AΦ satisfies
the concentration inequality

P (|‖AΦx‖22 − ‖x‖22| ≥ ε3‖x‖22) ≤ 2e−mc′
0,

where ε3 = ε + ε1(1 + ε), and c′0 is a constant that depends only on
c0(ε) and c0(ε1) (as defined in (1.6)). The same statement holds for
ΦB with ε3 = ε+ ε2(1 + ε) and m replaced by n.

Proof. We give the proof for the case of left multiplication by A, the
proof for the case of right multiplication by B is similar. By assump-
tion, with probability ≥ 1− 2e−mc0(ε1), the matrix A satisfies

(1− ε1)‖y‖22 < ‖Ay‖22 < (1 + ε1)‖y‖22, for any y ∈ R
n.

Replacing y by Φx (x ∈ R
N ), we have

(1− ε1)‖Φx‖22 < ‖AΦx‖22 < (1 + ε1)‖Φx‖22.(2.1)

Again by assumption, with probability ≥ 1 − 2e−nc0(ε), the matrix Φ
satisfies

(1− ε)‖x‖22 < ‖Φx‖22 < (1 + ε)‖x‖22, for any x ∈ R
N .(2.2)

Now the statement follows by combining (2.1) and (2.2). �

Remark. If m ≤ n, the constant c′0 in Theorem 2.1 can be roughly
estimated by the inequality c′0 ≤ c0(ε

′) − log 2/m, where c0(ε
′) =

min{c0(ε1), c0(ε)}. This is obtained from

1− (1− 2e−mc0(ε1))(1− 2e−nc0(ε)) ≤ 2e−m(c0(ε′)−log 2/m).

More precise estimation can be carried out, but we are not concerning
this point here.

Now we consider the cases when deterministic matrices are involved.
We observe that it is not possible to multiply a deterministic matrix A
from the left to extend the sensing matrix to achieve further reduction
in sampling without other assumptions. To see this, we consider the
SVD of A.
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For any positive integer d, let O(d) be the set of d × d orthogonal
matrices. There exists U ∈ O(n) such that

AtA = U t









σ1

σ2

. . .
σn









U,(2.3)

where σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0. Since for any T ⊂ {1, 2, . . . , N},
(AΦ)T = AΦT , we have

(AΦ)tT (AΦ)T = Φt
TA

tAΦT(2.4)

= Φt
TU

t









σ1

σ2

. . .
σn









UΦT

= (UΦ)tT









σ1

σ2

. . .
σn









(UΦ)T .

If m < n, then σm+1 = · · · = σn = 0, and hence








σ1

σ2

. . .
σn









(UΦ)T =

(

A1

0

)

for a suitable block matrix A1. From the last matrix one can see im-
mediately that RIP fails.
If m ≥ n, then we can change Φ by multiplying A from the left if A

has full column rank. Since under this assumption, all σi > 0. Note
that UΦ has the same RIP as Φ, so if δk is the RIP constant of Φ
corresponding to all T of size k ≤ N , we can bound the RIP constant
of AΦ by σn(1 − δk) and σ1(1 + δk). In fact, for z ∈ R

k, if we let
UΦT z = y = (y1, . . . , yn)

t, then ‖y‖2 = ‖ΦT z‖2, and according to (2.4)

σn‖y‖22 ≤ ‖AΦT z‖22 =
n

∑

i=1

σiy
2
i ≤ σ1‖y‖22.(2.5)

Thus we have (use (1.3))

σn(1− δk)‖z‖22 ≤ ‖AΦT z‖22 ≤ σ1(1 + δk)‖z‖22.(2.6)

Note that the above analysis works whether Φ is random or determin-
istic.
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Next, we consider the product ΦB. In this case, we need to distin-
guish between random matrix Φ and deterministic matrix Φ. Assume
that Φ is a random matrix satisfying the concentration inequality (1.6)
and hence satisfying the RIP inequality (1.3) with probability ≥ p.
Note that the concentration inequality is invariant under the right mul-
tiplication by an orthogonal matrix. That is, if U ∈ O(N), then ΦU
also satisfies (1.3) with probability ≥ p.
Let B be an N×q matrix. To make the argument clearer, we assume

that T ⊂ {1, 2, . . . , q} with |T | = k < N (note that this is sufficient for
our purpose). We have U ∈ O(N) and V ∈ O(k) such that

BT = U

(

D
0

)

N×k

V,(2.7)

where

D =









λ1

λ2

. . .
λk









, λ1 ≥ λ2 ≥ · · · ≥ λk ≥ 0.

For x ∈ R
k,

ΦBTx = ΦU

(

D
0

)

N×k

V x.(2.8)

Let

z =

(

D
0

)

V x ∈ R
N .

Then z is k-sparse (the last N − k entries are always 0). Thus, since
ΦU has the same RIP as Φ, we have

(1− δk)‖z‖22 ≤ ‖ΦBTx‖22 = ‖ΦUz‖22 ≤ (1 + δk)‖z‖22(2.9)

with probability ≥ p.
Let y = (y1, . . . , yk)

t = V x, then ‖y‖2 = ‖x‖2, and

‖z‖22 = xtV t(Dt 0)

(

D
0

)

V x

= yt









λ2
1

λ2
2

. . .
λ2
k









y =

k
∑

i=1

λ2
i y

2
i .
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Since

λ2
k‖y‖22 ≤

k
∑

i=1

λ2
i y

2
i ≤ λ2

1‖y‖22,

by (2.9), we have

λ2
k(1− δk)‖x‖22 ≤ ‖ΦBTx‖22 ≤ λ2

1(1 + δk)‖x‖22(2.10)

with probability ≥ p.
If Φ is deterministic, then for arbitrary U ∈ O(N), ΦU may not

satisfy the same RIP as Φ, and we do not have a good analysis of ΦB
for this case at the moment. Summarize our discussion, we have:

Theorem 2.2. Notation as before.
(1) If A is deterministic, then regardless whether Φ is random or

deterministic, AΦ has RIP if and only if A has full column rank. If
that is the case, the RIP constant of AΦ can be obtained from (2.6). If
Φ is random, then the probability for AΦ to satisfy RIP is the same as
that of Φ (with possible different RIP constant).
(2) If Φ is a random matrix satisfying the concentration inequality

(1.6) (hence satisfying the RIP (1.3) with probability at least p), and
B is an N × q deterministic matrix such that δk(B) ∈ (0, 2

1+δk
), then

with probability at least

1−
(

q
k

)

(1− p),(2.11)

the matrix ΦB satisfies the RIP with the same order as that of Φ and
a possible different RIP constant δk(ΦB) determined by (2.10).

3. Redundant Bases in Compressed Sensing

In this section, we apply Theorem 2.2 to redundant bases setting in
compressed sensing. From (1.8), we see that for given N and k, the
random matrices of size n×N generated by the distributions described
in (1.7) satisfy the RIP with high probability as long as

n ≥ Ck log(N/k) for some constant C.

Therefore it is desirable to reduce the integer k, i.e. to increase the
sparsity level of the signal, by considering redundant bases (or redun-
dant dictionaries). Recall that if a set of vectors B spans a vector
space V , then we call B a basis if B is linearly independent and call B
a redundant basis otherwise. To apply compressed sensing to a signal
y ∈ R

N that has a sparse representation x under a redundant basis
B of size q > N , we need to consider how the combination of a good
sensing matrix with a redundant basis affects the RIP.
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Let B be the matrix corresponds to the redundant basis B. Then
B is of size N × q and y = Bx with x ∈ R

q sparse. This problem has
been considered in [2][11]. In particular, in [11], a detailed analysis of
the situation was given. According to Theorem 2.2 in [11], if Φ satisfies
the concentration inequality (1.6) with 3

n ≥ Cδ−2
k [k(log(N/k) + log e(1 + 12/δk)) + log 2 + t],(3.1)

for some δk ∈ (0, 1) and t > 0, then with probability at least 1 − e−t,
the restricted isometry constant of ΦB satisfies

δk(ΦB) ≤ δk(B) + δk(1 + δk(B)).(3.2)

We now apply Theorem 2.2 to obtain a similar result.

Theorem 3.1. Notation as above. With the isometry constant satis-
fying

δk(ΦB) ≤ δk(B) + δk(Φ)(1 + δk(B))(3.3)

and the probability bound given by (2.11), the matrix ΦB satisfies the
RIP with the same order as that of Φ.

Proof. One just needs to note that the numbers λk and λ1 which appear
in (2.10) satisfy

1− δk(B) ≤ λ2
k ≤ λ2

1 ≤ 1 + δk(B).

�

For examples of redundant bases satisfying the condition in Theorem
3.1, we refer the readers to [11].

4. Conclusion and Discussion

We analyzed the problem of how the multiplication of a matrix to a
good sensing matrix affects its RIP. This type of problems arise in CS
when one wants to extend the sensing matrix by taking the product
of the sensing matrix with another matrix. A particular interesting
example is the application of CS under the redundant bases setting.
Our result in this short note provides some basic theory for further
investigation on the RIP and its applications in CS under different set-
tings. Future work includes constructing good redundant bases, which
is related to constructing good deterministic sensing matrices, and an-
alyzing their properties under CS.

3There should be a factor S (which is our k) for the term log(e(1+12/δ)) in the
bound for n given in [11]. This affects some later estimates in [11].
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