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ABSTRACT

In recent work, we studied the problem of causally recowsitig
time sequences of spatially sparse signals, with unknowinstow
time-varying sparsity patterns, from a limited number aghr “in-
coherent” measurements. We proposed a solution called &alm
Filtered Compressed Sensing (KF-CS). The key idea is to man a
duced order KF only for the current signal’s estimated nomzoe-
efficients’ set, while performing CS on the Kalman filteringee to
estimate new additions, if any, to the set. KF may be repldged
Least Squares (LS) estimation and we call the resultingriztgo
LS-CS. In this work, (a) we bound the error in performing CSlomn
LS error and (b) we obtain the conditions under which the K&-C
(or LS-CS) estimate converges to that of a genie-aided KE®)r
i.e. the KF (or LS) which knows the true nonzero sets.
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1. INTRODUCTION

In recent work[[1], we studied the problem of causally retms-
ing time sequences of sparse signals, with unknown and &hoe t
varying sparsity patterns, from a limited number of noisergpted
“incoherent” measurements. We proposed a solution calkth&n
Filtered Compressed Sensing (KF-CS). With the excepti@[Z]
and of [3], most other work']4.]5] treats the entire time sewqaeof
signals/images as a single spatiotemporal signal andrpesf€S to
reconstruct it. This is a non-causal solution and also hgis tom-
putational cost. On the other hand, if the number of obsienst
is small, performing CS]2] at each time (simple CS) incursimu
larger error than KF-CS, see Fig]l 1. Potential applicatioikF-
CSinclude making dynamic MRI real-time (causal and fasughd
[4, [6]; real-time video imaging using a single-pixel camf5h or
real-time tracking of temperature, or other, time-varyfiegds using
sensor networks that transmit random projections of the [iél

and all.S¢-column sub-matrices ofl “approximately orthonormal”,
i.e.ds, < 1[2 eq. (1.3)].w; is independent of; and is i.i.d,Vt.

Let N; denote the the support setaf, i.e. the set of its non-zero
coordinates and léf; £ N, denote its estimate. Also, leX; denote
the undetected nonzero set at timee. A; £ N, \ Ti—1 and letA;
denote its estimate. Thi& = T;—1 U A,. LetS; 2 |N;| where
|.| denotes the size of a set. Also, for any Belet (v)r denote the
|T'| length sub-vector containing the elements arresponding to
the indices in the sef’. For a matrix4, At denotes the sub-matrix
obtained by extracting the columns dfcorresponding to the indices
in T. We use the notatiofQ)r, 7, to denote the sub-matrix @
containing rows and columns corresponding to the entrigs iand
T, respectively.T° denotes the complement fw.r.t. [1 : m], i.e.
T° £ [1: m]\ T. ¢ refers to the empty set.denotes transpose.
Them x m matrix It is defined as follows(Ir)r,» = I wherel
is a |T'|-identity matrix while(I7) e [1.m] = 0, (I7)[1:m),7c = 0.

The nonzero coefficients’ séf; changes slowly over time. For
the currently nonzero coefficients of, (z+)~,, we assume a spa-
tially i.i.d. Gaussian random walk model, while the restla# toef-
ficients remain constant, i.e.

20=0, xt = zi1+ve, v ~N(0,Q0), Q=02 In, (2)

wherev; is temporally i.i.d.. The current nonzero sefy;, is un-
knownVt. Our goal is to recursively get the best estimated’pand
2+ (or equivalently of the signak: = ®x:) usingya, . .. y.

2. KALMAN FILTERED CS AND LEAST SQUARES CS

We describe a simple modification of KF-CS [1] and introdueast
Squares CS. Lety;_1, &+, K¢ and Py, P; denote the predicted
and updated state estimates at timehe Kalman gain and the pre-
diction and updated error covariances given by the KF in K§--C
(since KF-CS does not always use the correct valugofP; ., or

In this work, in Sec.[2, we describe a simple modification of P; are not equal to the actual covariances:pf- &, Or x; — &+).

KF-CS [1] and introduce its non-Bayesian version, LeastaBeg
(LS)-CS. Ourkey contributionsare: (a) in Sec[]3, we bound the
error in performing CS on the LS error in the observation am-c
pare it with that for performing CS on the observation (sienplS),
and (b) in Sec[]4, we obtain the conditions under which theGg--
(or LS-CS) estimate converges to that of a genie-aided KE®)r
Simulation comparisons are given in Sgk. 5.

Problem Definition. The problem definition is the same as in
[@l. Let (z:)mx1 denote the spatial signal of interest at timand

(yt)nx1, Withn < m, denote its noise-corrupted observation vector

2.1. Modified Kalman Filtered Compressed Sensing (KF-CS)
KF-CS can be summarized as running a KF for the systefd ifZ)L), (
but with Q; replaced byQ, = oﬁysITt. The new additions, if any,
are estimated by performing CS on the Kalman filtering effofs.

At time ¢, we first run a “temporary” Kalman prediction and
update step usin@; = ainITFl, i.e. we compute

Kiamp = (P14 Qi) A (A(Pec1 + Q) A’ + 02, 1)
Ztemp = (I — Kt tmpA)Te—1 + Kt tmp Yt (3)

att. The signalz:, is sparse in a given sparsity basis (e.g. wavelet)

with orthonormal basis matrixp,,.xm, i.e. z; = &'z is a sparse
vector (onlyS; << m elements ofz, are non-zero). The observa-
tions are “incoherent” w.r.t. the sparsity basis of the alghe.

yr = Az +wi, A2 H®, Elw,] =0, Elw,w;] = oI (1)
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LetT £ T;_;. The filtering error is
Trres 2 yr — At omp = An, (Te)a, + Ar(xp — 24)7 + Wi (4)

As explained inl[1], if the filtering error norm is large, tleds a need
to estimateA,;. One can rewritg; res aSyres = ApS: + we, Where
Be £ [(xr — &)1, (T)ag, O¢rua,)e] is a “sparse-compressible”
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Algorithm 1 Kalman Filtered Compressive Sensing (KF-CS)
Initialization: Setio = 0, Py = 0, Ty = ¢ (if unknown) or equal to the known support. Rox 0, do,

1. Temporary Kalman prediction and update. Implement[(3) using), = af\ySITF].

2. Compute Additions using CS. Compute the KF errofi res = y¢ — A#,tmp. CheCK ifFEN £ 1 o857}, Grres > age. Ifitis,

ST fet

(a) Do CS ong,res followed by thresholding.e. computed, using [3), [6). The new estimated supporfis= T} 1 U A,.

3. Kalman prediction and update. Implement[(¥) using), = af.ySITt.
(@) (KF-CS with final LS): IfT; # Ti_1, implement[[Y) using); = oolr,, i.e. seti, = (A%, A" Ay and (P) 1,1, =
(Al Azy) ol (Pr)re: =0, (Pr).1e = 0.
4. Compute Deletions. If T; == T;_1 - -- == T;_; (nonzero set has not changed for long enough, i.e. w.h.pt&tized),

(2) Check for “zero” coefficients, i.e. computey = {i € Th : 320, (82.0)%/K < az}with k' < k. SetTy + T, \ Az.
Set(:ct)AZ = 0. Set(P;) [ =0 and(Pt)[lzm]’AZ =0

z,[1:m]

5. Output T3, &+ and the signal estimatez; = ®z.. Incrementt and go to the first step.

signal with a “large” or “non-compressible” nonzero pdtty)a,, When a coefficient;, is detected as being zero, we remove it
and a “small” or “compressible” nonzero patty: — 2¢)r. The  fromT;, we seti;; = 0 and we SetF:); (1:m) = 0, (Pt)[1:m),i = 0.
Dantzig selector (DS)]2] followed by thresholding can bpleggl to  We summarize the entire KF-CS algorithm in Algorithin 1.

detect the “non-compressible” nonzero part as follows: 2.2. Least Squares CS: Non-Bayesian KF-CS

B = argmin || 8|1, s.t. || A" (Je.res— AB)|loo < AmTobs (5) In applications where training data is not be available toriethe
p prior model parameters required by KF-CS, one can use a non-
Av={ieTl: BEL > Qa} (6) Bayesian version of KF-CS i.e. replace the KF in KF-CS by Leas
Squares (LS) estimation. The LS step is also faster than Ehetép.
where)\,, £ /2logm anda, is the additjon threshoIdA. Thus, the

estimated support setattimésT; = T U Ay = Tr—1 U Ay 3. ANALYZING CS ON LS ERROR (LSE)
Next we run the Kalman prediction/update usipg= olyslr,: LetT £ T;—y andA £ A, = N, \ T;—1. The true nonzero sets
R at any time, N, are assumed to be non-random. But= Ti_;
Py—1 = Pio1+Q, Ky =Py 1A' (AP A"+ oy ) is a random variable since its value dependsyon, and7;_» (or
Po= (I - KA)Py 4 equivalently ony:.:—1). We useE|[-] to denote expectation w.r.t. all

N R random quantitiesy.., z1.+ at timet) while usingE|-|y1.t—1] to
e = (I = Ki )& + Kug ™ denote tr?e expect?é% value conditio%edy@nfl. gor[Ié?thioneli on
with initialization Py = O(1.n,(1:m]> £0 = Of1.m)- Y1:t—1, the setl, and hence also the sAt= N, \ T, is knpwn. .
The key difference between simple CS and LS-CS is that simple
Remark 1 For easy notation, in[(3].{7) we write the KF equations CS applies[(b) on: = Az, + w to estimate théN, |-sparse signal,
for the entirex,. But actually we are running a reduced order KF z,, while LS-CS applied(5) on the LS error (LSE),res := y: —
for only the coefficients ifft (I' = Ti—, for @) andT = T for @). Az tmp = AB:+w: to estimated; := xt— &+ tmp, WNEre; tmp =
(ALAT) " Ay B = (T — Zemp)T, (T)A,0T0A] =
2.1.1. Deleting Zero Coefficients (A7 A7) T A (Aa(zi)a + we), (z0)a, 0ruac] is what we call
If the addition thresholdzy,, is not large enough, occasionally there & SParse-compressible” signal: it/is U A|-sparse but, if the spar-

will be some false additions (coefficients whose true vatueero sity pgttgrn changes slowly enoggh, itis compressiblegaﬂane.
but they wrongly get added due to error in the CS step). Afgeret use this idea to bound the error in CS on LSE and to show thiag if t

may be coefficients that actually become and remain zerosuth sparsity pattern changes sl_owly enough, the CS-LSE ermdis

coefficients need to be detected and removed ffoito prevent un- much smaller than thgt of S'F"P.'e Cs. o

necessary increase fifi|. IncreasedT; | implies smaller minimum We use the following definition of compressibility of the cam

eigenvalue ofA’, Az, and thus increased estimation error. The in-Processs: = Bt (wt, y1:1)-

crease is especially largedfr, Ar, is close to becoming singular.  Definition 1 We say thap; is compressibleif the maximum over
One possible way to detect if a coefficientis zeroisto checkif T of the average of3:)7, conditioned on past observations, is

the magnitude of its estimates in the last few time instas@viall,  smaller than the minimum average squared value of any cur-

e.g. one can check ¥! _, ,, ., (&-:)?/k < a.. This scheme rently nonzero component af, i.e. if max;er E[(8:)?|y1:4-1] <

would be fairly accurate (small enough false alarm and mieb@®  min;e n, E[(x)?]. This is avalid definition sincain;e n, E[(2¢)7] <

bilities), if the estimation errok- ; = z-,; — &-, is small enough,  min;ca E[(z¢)?] = min;ca E[(5)?] for all choicesA = A(y1.¢—1).

forall 7 € [t — k" + 1,¢t]. If we check for zeroing only wheff; ) ]

has not changed for long enough (w.h.p. this implies thapagt ~ Assumption 1 (model, algorithm) Assume that

additions have been detected, i.&; = N;, and the KF forT; 1. y¢, @ follow (@), [2); w:, v+ are independent of each other
has stabilized), the variance ef ; would be approximately equal and over time; andv: has bounded support (e.g. truncated
t0 (Pr)ii < 024/ Amin (AT A7), i.e. it would be small enough. Gaussian) with cutoffs at —mZsb=_ in all dimensions.

max; |[A;|[1



2. N¢—1 € Ny forall tandS; := |N¢| < Smaz. Lemma 1 [B] Assume that there existst@ s.t. V¢ > to, T; =

3. The number of false additions is bounded, [il@\ N;| < 57, ~ V¢ = N and assume thay,| < 1. Consider KF-CS without the
for all ¢. This implies thatT;| < S; + Sa < Smaz + Sa- gelﬁt'LOS':') Stelrv I.e. Vﬁ%s - (; ?Fnd W'IIEE tf&@ﬁsteBa,(fE-C}iV\g@

. o ina replacing s y # Ty_1. The difference in the KF-

4. 08 pnas+55a < 1. s = ds(A) is defined in[[2, eq. (1.3)]. and GA-KF estimates], 2 |:.caxr — 4¢|, cOnverges to zero in

Bounded measurement noise (Assumpfilhh 1.1) is usuallg.vAB-  mean square and hence also in probability.

sumption LB is observed in all our simulations, as long asa

dition thresholday, is large enough. Assumptidi1.4 quantifies the ~ Assume that Assumptidd 1 holds. The bounded support assump-

required amount of incoherency of the measurement matri the ~ tion onw; ensures thatA;w:| < ||we|loo]|Aill1 < AmOobs, Vi

sparsity basis. Consider Assumpt[dil1.2. While this assiomps ~ With this, the theorems of[2] can be directly modified to hwiith

not strictly true, it is observed (for medical image seqashdhat it~ probability one. This helps prove the following.

is approximately true: the séf; \ N:—1, and the total seN; \ No, Lemma 2 Assume that (i) Assumpti@h 1 holds and thia n

are both smalll..AIso, if we relax the definition of sypport Endte Sas < 1 (stronger incoherency requirement than earlier); and
any set containing all nonzero elementsepfthen this is true. (il ?F\amAIgorithmﬂ] we set, — By £ C2)2,Sman0c’,. (C1 'is
3 a — - 1vm~Pmaxtobs

Under the above assumptions, we can prove the followihg [8]: defined in[[2, Thm. 1.1]). Then, at eattthe following hold:

Theorem 1 Assume that Assumptibh 1 holds. Let= t.(t) denote . P A 22 9
the last addition time before or at lze = &t,0mp — Bell” < Br = Cr A Smazoops  (8)

1. If |A| is small enough to ensure thét — t, + 1)02,, > Ay € Ny, and soTy € Ny, and soT: U Aryr = Nejr (9)

%)\Ww (El(ze)a (@) alyre—])+ 7254 thens, == Proof: We prove this result by induction. At artywhen solv-

Tt _:Et,t’rnp |s Compress|b|$SYS, |s deflned |n[m’ eq. (1.5)]. |ng E), £t7t77LPAai = 07 Vi € thfl' The Sparse vector to be es-
2. The following bound on the CS-LSE error holds

timated isf: = [(xt — Zt,tmp)T,_y > (Tt)A,, Ong]. First consider
the base case¢, = 1. Att = 1, T:—1 = To = ¢ (empty) and
E[||z: — &,cs1se|3ly1:6-1] < min  Bespse(S) SO Z1,tmp,i = 0, Vi. Thuspi = x1 with nonzero set\; = N;.
1585800 Since|Ni| < Spma. and since the observation noise;, satisfies
Bossu(S) = Ca(8)S0%. + Cs(S) (T +]AI=5) ;4 [Afwe| < Amoobs, we can apply Theorem 1.1 dfl[2] to gé (8) to
S always hold at = 1.
Also, for anyi € N{,z1; = 0and s032,; = (z1,; — f1,:)? <
N |1 — &1,6mp — B1]|*> < Bi (from @)). Butew, = By. Thus, from
(T + Al = 5) 725 it S=[Al @), A; € Ny ThusT) £ To UA; C Ny. ButN; C Ne. Thus,
( 9\2TMA\ + 1)E[||($t)A||2|y1:t—1]+ Ty C Na. SinceA; = N1 \To, this implies thatl; U Ay = No.

02
AL R ()l P -]+

(a=87)* Thus [9) also holds for = 1. This proves the base case.
|T| 7%k if S<IA| For the inductive step, assume tHat (9) dnld (8) holdtfer1.
I Thus,T;—1 U Ay = Ny, which is the nonzero set fgh. But|N:| <
where &; csrse is the output of[(B) Withjies = y: — Smaz. Thus Theorem 1.1 of [2] can be applied to ¢ét (8) to hold for
At emp AN E4,tmp = (AT AT) " Alpye. t. Also, for anyi € Nf, z¢; = 0 and soB?; = (v, — fr.i)? <
Notice thatE[(z:) a (z:)'x|y1:c—1], and its traceR[|| (z:) a||?|y1:6—1], Tt — e.tmp — Bt||? < B1 = aa. Thus from[6)A; C N;. Thus
can be computed by running a genie-aided KF. T, 2 T,-1UA; € Ny C Niyy. SinceAiy1 2 Niyy \ Ty, this

In [8], we also derive a bound on the unconditional CS-LSEmeans thaf; U A;11 = N+1. Thus [9) holds fot. This proves
error, i.e. the error averaged over all values of the pastrohsions,  the induction step and thus the result holds.
under slightly stronger assumptions. We also discuss wipolind

on the CS-LSE error is much smaller than that on simple C3.erro Lemma 3 Assume that (i) Assumptiéi 1 holds and that,,,, +

838 man < 1; (i) in Algorithm[I, we setv, = B1 £ C?A2,Simaz0s:;
4. CONVERGENCE TO GENIE-AIDED KF (OR LS) and (iii) all additions occur before a finite timet, maz, i.€.

Consider the genie-aided KF, i.e. the KF which knows the true™Vt = Ntwmawr V¢ 2 tamaz. LEUN. £ Niymae- Then,
nonzero setN;, at eacht. It is the linear MMSE estimator of;  1iMt—oo Pr(Ti4r = Nipr = Ni, V7 2 0) =1
from y1, ...y if the nonzero setsN;’s, are known. It would be . . . )
the MMSE estimator (i.e. it would be the best estimator amalhg . Proof. Since (i) and (") h.0|d‘ Lemm]2 hOIdg' Forang A,
possible estimators) if the observation noise were Gaussiead 1t ~ 0. Thus, [8) |mpllt_es thatz,; — fri)” < Bi and so
of truncated Gaussian. The genie-aided KF can be summaaized |9t = [24,i] *_\/B_l- Thus, if |z¢,:| > VB1 + yaa = 2VBu,
running [7) withQ, = 02, Ix,. In this section, we obtain condi- thenfZ; > aa, i.e.i € A Inother words Pr({i € Alaf, >
tions under which the KF-CS estimate converges to the geidied ~ 4B1}) = 1. The same argument applies even if we consider all
KF estimate in probability. As a corollary, we also get cdiodis for @ € As. Thus,Pr({A; C A}{z7, > 4B1 Vi € A}) = 1.
LS-CS to converge to genie-aided LS. But from (@) and[(B),A; C A,. Thus, ifz?, > 4B, Vi €

We begin by giving LemmEIl_ states that if the true nonzeron, A, = A, and soT; £ T, , UA, = N,. Thus, Pr(T; =
set does not change after a certain time, and if eventuaiydor- Ni|[{z3; > 4B1 Vi € A}) = 1. Now, V¢ > ta,maz, Ne = Na.
rectly detected, then KF-CS converges to GA-KF. This isolo8d  Thys fort > ¢, a0, T: = N. implies thatA,; = ¢. This implies
by Lemmad P anfl]3 which prove that, if the addition thresheld iy, A, — ¢ and soTy1 = T, = N.. Thus, 7, = N. implies that
high enough, the probability of false addition is zero arel phob- T — N.. VE > 0. Thus. for allt > ¢ '

™ : . .. t+k *y = U. ) a,max;
ability of correct set detection approaches one withCombining
these lemmas gives the final result. Pr(Ti4r = N YT > 0|{:cf,i >4AB1Vie A}) =1 (20)



Now, 7 ; ~ N(0, (t — t;)o?2,,) wheret; is the time at which ele-
ment: got added. Note that < ¢4 maz. Thus,

4B1

(t - ta,,maw)agys

Pr(z;,; > 4B1) > 2Q(

) (11)

whereQ is the Gaussian Q-function. Combinilig{10).](11) and using
the fact that the different; ;'s are independent,
S’VTLO/I
)) (12)

Thus for anye > 0, Pr(Ti+- = N.,¥V7 > 0) > 1 —¢€if t >

ta,macv + Te, Te 2 ’— 1((?]?1)1/57)1(13: )]2-‘, where [-‘ is the
Qo fmmer

4B,

(t - ta,'maw)agys

Pr(Tiir = N. V7 >0) > (2@(

Ug S[Q7
greatest integer functio%. Thus the claim follovlis.
Combining Lemmé&l3 with Lemnid 1 we get the final result.

Theorem 2 Assume that (i) Assumptibh 1 holds and that,,.. +
038,,., < 1; (ii) in Algorithm[D, we setv, = By 2 CIA2, Simaw0oys;
and (iii) all additions occur before a finite timet, maz, i.€.
Nt = Niypmaz, ¥ > tamae. Consider KF-CS without the
deletion step, i.e. witlx. = 0, and with the step3a (KF-CS with
final LS) replacing stepl3 if; # T:—1. Thend: £ &;.caxr — &t
converges to zero in probability, i.e. the KF-CS estimateveayes
to the Genie-Aided KF estimate in probability, ias+ oco.

Also, the LS-CS estimate converges to the Genie-Aided inSasst
in probability, ast — oo (this follows directly from Lemnid 3).

The assumptio®zs,, .. + 03s.,.. < 1 IS just stronger incoherency
requirement ond than Assumptiofi]ll. The assumption of all addi-
tions occurring before a finite time is a valid one for probdawhere
the system is initially in its transient state (nonstatigjabut later
stabilizes to a stationary state. Alternatively, the abine®rem can
be applied to claim that the KF-CS (or LS-CS) estimate sizdsl
to within a small error the GA-KF (or GA-LS) estimate, if atidns
occur slowly enough, i.e. if the delay between two additiomes is
long enough to allow it to stabiliz€][8].

5. SIMULATION RESULTS

Lemmal2 says that if the addition threshold was set high émoug
(oo = By whereBj is the CS error upper bound), then there would
be no false additions. But if we set the addition threshoky égh,
then for the initial time instants, the KF-CS estimatioroemvould

be large and it will do worse than simple CS. Thus, in practieeset

a, lower, but we implement the false addition detection andoeah
scheme described in Séc. 2]1.1. We evaluated its perfoamesiag
the following set of simulations. We simulated a time seaqeeof
sparsen=256 length signals;; = z; which follow (2) with afys =

1 and nonzero setsy:—1 C N, Vt satisfyingN; = N1, Vt < 10,

Ny = Ni1o,V10 < ¢t < 20, N; = N3o,V20 < ¢t < 30, N,
N307V30 <t < 100 and|N1| = 8§, |N10| = 12, |N20| = 16,
|[N3o| = 20. ThusSmaee = 20. The setlV: and all the additions
were generated uniformly at random from the remaining etgsme
out of [1 : m]. The measurement matrid = H was simulated as
in [2] by generating: x m i.i.d. Gaussian entries (with = 72) and
normalizing each column of the resulting matrix. The obaton
noise variance was2,; = ((1/3)~/16/n)? (this is taken from[[2])
and we simulated Gaussian noise (not truncated).

We implemented KF-CS with,, = /2log,m = 4, aq
902, Afe = 20, a5 = 0, k = 5, k' = 3. Since the observation
noise was not truncated, occasionally the addition stagtezsin a
very large number of false additions, which madig, A7, singular

—— Genie-Aided KF|
—*-cs
—¢—KF-CS

— Genie-Aided KF|
c:

= KF=

Pi

MSE -
MSE -

£

#

10 20 30 40 S50 60 70 8 9 100 20 40 80 100 120
time, t —

0
time, t —

Fig. 1. MSE plots comparison. Fifj. I{a): Large KF-CS error occurs
at and after the new addition times,= 10, 20, 30. But once the
addition is detected, the error gradually reduces to thadAfKF

(or slightly higher). The error of simple CS (labeled as GShiuch
larger (max value 45). Fid._I(b): Simple CS error beyong 50
whensS; > 26 than is much larger in the Fif. I[a) (max value 425).

(or almost singular) resulting in large errors at all futtr@o prevent
this, we set a maximum value for the number of allowed adudftio
we allowed at mos{1.25n/ log, m) largest magnitude coefficient
estimates larger than, to be added. Also, typically an addition
took 2-3 time instants to get detected. Thus wessgl, = 3072,
(07, is used instead of?,, the first time a new coefficient gets
added). We simulated the above system 100 times and comih&red
MSE of KF-CS with that of GA-KF and of simple CS (followed by
thresholding and least squares estimation as in GaussiD4P}).

In a second set of simulations, shown in Fig._L(b), we started
with S; = 8 and for10 < ¢ < 50, we added 2 new elements every 5
time units. ThusS,,qe = 26 = S¢, V¢ > 50. Note26 > n/3 = 24,
i.e.d3s,,.. cannot be smaller than 1.

6. DISCUSSION AND ONGOING WORK

In this work, we introduced Least Squares CS and analyzed why
CS on the LS error in the observation will have lower erront@s

on the raw observations (simple CS), when sparsity pattdrasge
slowly enough. We also showed that if all additions occuobef
finite time, if the addition threshold is set high enough, U holds

for Smaa, and if the noise has bounded support, KF-CS (or LS-CS),
converge to the genie-aided KF (or LS) in probability. In oimg
work, we are working on relaxing the first three assumptiosedu

in the above result. We are also working on developing KF-@S f
real-time dynamic MR imagind [6].
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